Skip to main content

Community Repository Search Results

resource research Media and Technology
The goal of our project is to develop strategies that effectively engage autistic adolescents in informal STEM learning opportunities that promote the self-efficacy and interest in STEM careers that will empower them to seek out career opportunities in STEM fields. The research aims are to: 1. Identify evidence-based strategies to engage autistic youth in informal STEM learning opportunities that are well matched to their attentional profiles: Hypothesis 1: Pedagogical strategies vary in how engaging they are for people with diverse attentional profiles; people with more focused
DATE:
TEAM MEMBERS: Katie Gillespie Amy Hurst Beth Rosenberg Jessye Herrell Eliana Grossman Sharang Biswas Eunju Pak Cristina Ulerio Ariana Riccio Jin Delos Santos Patrick Dwyer Sergey Shevchuk-Hill Wendy Martin Lillian Hwang-Geddes Bella Kofner Rheniela Faye Concepcion Theresa Major Saumya Dave Kyle Gravitch Terrance Bobb
resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource research Media and Technology
This chapter discusses the selection and potential use of electronic games and simulations in distance learning supported by an operational model called AIDLET. After analyzing the different approaches to the use of games and simulations in education, and discussing their benefits and shortcomings, a framework was developed to facilitate the selection, repurposing, design and implementation of games and simulations, with focus on the practical aspects of the processes used in Open and Distance Learning (ODL). Whereas traditional learning is based on knowledge memorization and the completion of
DATE:
TEAM MEMBERS: Jose Bidarra Meagan Rothschild Kurt Squire
resource research Media and Technology
Smartphones and other mobile devices like the iPhone, Android, Kindle Fire, and iPad have boosted educators' interest in using mobile media for education. Applications from games to augmented reality are thriving in research settings, and in some cases schools and universities, but relatively little is known about how such devices may be used for effective learning. This article discusses the selection and potential use of electronic games, simulations and augmented reality in mobile learning supported by an operational model called AIDLET. After analyzing the different approaches to the use
DATE:
TEAM MEMBERS: Jose Bidarra Megan Rothschild Kurt Squire Mauro Figueiredo
resource research Media and Technology
The videogames industry has been flourishing. In 2010 in America alone, total consumer spending on the games industry totaled $25.1 billion (Siwek, 2010), surpassing both the music industry ($15.0 billion) and box office movies ($10.5 billion). It is also one of the fastest growing industries in the U.S. economy. From 2005 to 2010, for example, the videogames industry more than doubled while the entire U.S. GDP grew by about 16 percent. The amount of time young people spend with entertainment media in general is staggering. Youth aged 8 to 18 years old consume about 10.45 hours per day of
DATE:
TEAM MEMBERS: Constance Steinkuehler Kurt Squire
resource project Media and Technology
Robots and robotics excite and challenge youths and adults. Unfortunately, the cost of purchasing robots or building useful robots is prohibitive for many low resource individuals and groups. This project will relieve this expense and provide an opportunity for resource limited individuals to experience the thrilling aspects of robotics by building a computer game that simulates robotic action. This project uses co-robotics wherein the participating player programs an avatar to assist in a symbiotic manner to achieve the goals of the game and participant. The game will provide access to the ideas and concepts such as programing, computational thinking and role assumption. The overarching goals are (1) to engage low-resource learners in STEM education through robotics in out-of-school spaces, and (2) to update the field of robotics-base STEM education to integrate the co-robotics paradigm.

This project is designed to gain knowledge on how co-robotics can be used in the informal education sector to facilitate the integration of computational science with STEM topics and to expand the educational use of co-robotics. Because the concept of co-robotics is new, a designed-based research approach will be used to build theoretical knowledge and knowledge of effective interventions for helping participants learn programing and computational thinking. Data will be collected from several sources including surveys, self-reports, in game surveys, pre and post-tests. These data collection efforts will address the following areas: Technology reliability, Resolution of cognitive tension around co-play, Accelerate discovery and initial engagement, Foster role-taking and interdependence with co-robots, Investigate social learning, and Validate measures using item response theory analysis. The DBR study questions are:

1.What design principles support the development of P3Gs that can effectively attract initial engagement in a free-choice OST space that offers large numbers of competing options? 2.What design principles support a P3G gameplay loop that enables learning of complex skills, computational thinking and co-robotics norms, and building of individual and career interest over the course of repeated engagement?

3.What design principles support P3Gs in attaining a high rate of re-engagement within low-resource OST settings? 4.What kinds of positive impact can P3Gs have on their proximal and distal environment? In addition, the project will research these questions about design: 1.What technical and game design features are needed to accommodate technological interruption? 2.What design elements or principles mitigate competition for cognitive resources between real-time play and understanding the co-robotic's behavior in relation to the code the player wrote for it? 3.What design elements are effective at getting learners in OST settings to notice and start playing the game? 4.What designs are effective at encouraging learners to engage with challenging content, particularly the transition from manual play to co-play? 5.What design elements help players develop a stake in the role the game offers? 6.What social behaviors emerge organically around a P3G prototype that is not designed to evoke specific social interactions?

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ross Higashi
resource research Media and Technology
“Reclaiming Digital Futures” is a free guide and associated website for youth organizations to use as they integrate digital learning into their programming and practices. The report is available at DigitalLearningPractices.org. The report and the associated DigitalLearningPractices.org site contain a cross-section of resources to aid organizations and educators in developing quality programming that integrate technology and youth development. Rather than focusing on efforts to help youth become fluent and skilled in uses of technology simply for the sake of meeting predetermined standards
DATE:
TEAM MEMBERS: Rafi Santo June Ahn Juan Pablo Sarmiento
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource evaluation Media and Technology
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science of soundscape ecology analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater show, group activities, and websites. All components are designed with both sighted and visually impaired students in mind. Multimedia
DATE:
TEAM MEMBERS: Barbara Flagg Allan Brenman
resource research Media and Technology
In this literature review, we seek to understand in what ways aspects of computer science education and making and makerspaces may support the ambitious vision for science education put forth in A Framework for K-12 Science as carried forward in the Next Generation Science Standards. Specifically, we examine how computer science and making and makerspace approaches may inform a project-based learning approach for supporting three-dimensional science learning at the elementary level. We reviewed the methods and findings of both recently published articles by influential scholars in computer
DATE:
TEAM MEMBERS: Samuel Severance Susan Codere Emily Miller Deborah Peek-Brown Joseph Krajcik
resource project Games, Simulations, and Interactives
EMERGE in STEM (Education for Minorities to Effectively Raise Graduation and Employment in STEM) is a NSF INCLUDES Design and Development Launch Pilot. This project addresses the broadening participation challenge of increasing participation of women, the at-risk minority population, and the deaf in the STEM workforce. The project incorporates in and out-of-school career awareness activities for grades 4-12 in a high poverty community in Guilford County, North Carolina. EMERGE in STEM brings together a constellation of existing community partners from all three sectors (public, private, government) to leverage and expand mutually reinforcing STEM career awareness and workforce development activities in new ways by using a collective impact approach.

This project builds on a local network to infuse career exposure elements into the existing mutually reinforcing STEM activities and interventions in the community. A STEM education and career exposure software, Learning Blade, will be used to reach approximately 15,000 students. A shared measurement system and assessment process will contribute to the evaluation of the effectiveness of the collective impact strategies, the implementation of mutually reinforcing activities across the partnership and the extent to which project efforts attract students to consider STEM careers.
DATE: -
TEAM MEMBERS: Gregory Monty Margaret Kanipes Malcolm Schug Steven Jiang
resource research Games, Simulations, and Interactives
We describe a game and teachers’ experiences using it in their middle and high school science courses. The game, which is called “Luck of the Draw,” was designed to engage middle, high school, and college students in genetics and encourage critical thinking about issues, such as genetic engineering. We introduced the game to high school science teachers attending a summer workshop and asked them to describe their initial impressions of the game and how they might use it in their classes; later, during the academic year, we asked them whether they used the game in their classrooms and, if so
DATE:
TEAM MEMBERS: Alicia Bower Kami L. Tsai Carey S. Ryan Rebecca Anderson Andrew Jameton Maurice Godfrey