Skip to main content

Community Repository Search Results

resource project
iPlan: A Flexible Platform for Exploring Complex Land-Use Issues in Local Contexts
DATE: -
TEAM MEMBERS:
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This RAPID project was submitted in response to the NSF Dear Colleague letter (NSF 17-128) related to Hurricane Harvey along the Gulf Coast. The PBS NewsHour team will produce 9 stories for national distribution using multiple broadcast and online channels that will engage the public and increase their understanding of the science and engineering research being conducted to better predict and mitigate the impact of future storms. Hurricane Harvey was the first of several storms in 2017 that hit first Texas then Florida and the Caribbean creating unprecedented devastation. This project aims to help the public better understand the science behind storms, and how scientists and engineers are actively collecting data, developing new models, using new technologies, and studying the environmental recovery. The PBS NewsHour team has in place experienced science journalists, production facilities, and a distribution network that can quickly develop media stories based on the work of scientists and engineers in the field, many of whom are funded by NSF. The NewsHour has a strong track record of telling stories that are scientifically accurate yet highly engaging and understandable to a diverse audience. Researchers from several universities including Texas A&M, Rice University, and Norfolk State University are advising the NewsHour team and may also be featured in some of the media. The team will also use their existing collaboration with education researchers at New Knowledge, Inc. to seek audience feedback on proposed/produced media.

The potential audience reach of these stories is extensive. Stories that are broadcast on the nightly PBS NewsHour reach 1.6 million people. The NewsHour's website currently reaches 6 million while their YouTube channel has 40 million views. They have a growing audience of younger viewers who mainly get their news on social media channels such as ScienceScope and Apple News. EXTRA is another service offered just for teachers.
DATE: -
TEAM MEMBERS: Patti Parson
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project Professional Development, Conferences, and Networks
This NSF INCUDES Design and Development Launch Pilot will increase the recruitment, retention, and matriculation of racial and ethnic minorities in STEM Ph.D. programs contributing to hazards and disaster research. Increasing STEM focused minorities on hazards mitigation, and disaster research areas will benefit society and contribute to the achievements of specific, desired societal outcomes following disasters. The Minority SURGE Capacity in Disasters (SURGE) launch pilot will provide the empirical research to identify substantial ways to increase the underrepresentation of minorities in STEM disciplines interested in hazards mitigation and disaster research. Increasing the involvement of qualified minorities will help solve the broader vulnerability concerns in these communities and help advance the body of knowledge through the diversity of thought and creative problem solving in scholarship and practice. Utilizing workshops and a multifaceted mentorship program SURGE creates a new model that addresses the diversity concerns in both STEM and disaster fields, and make American communities more resilient following natural disasters. This project will be of interest to policymakers, educators and the general public.

The Minority SURGE Capacity in Disasters (SURGE) NSF INCLUDES Design and Development Launch Pilot will enhance the social capital of racial and ethnic minority communities by increasing their networks, connections, and access to disaster management decision-making among members of their community from STEM fields. The four-fold goals of SURGE are to: (1) increase the number of minority graduate researchers in STEM fields with a disaster focus; (2) develop and guide well-trained, qualified disaster scholars from STEM fields; (3) provide academic and professional mentorship for next generation minority STEM scholars in hazards mitigation and disaster research; and (4) develop professional and research opportunities that involve outreach and problem solving for vulnerable communities in the U.S. The SURGE project is organized as a lead-organization network through the University of Nebraska at Omaha and includes community partners. As a pilot project, SURGE participation is limited to graduate students from research-intensive universities across the country. Each student will attend workshops and training programs developed by the project leads. SURGE investigators will conduct project evaluation and assessment of their workshops, training, and mentorship projects. Results from evaluations and assessments will be presented at STEM and disaster-related conferences and published in peer-reviewed academic journals.
DATE: -
TEAM MEMBERS: DeeDee Bennett Lori Peek Terri Norton Hans Louis-Charles
resource project Public Programs
The University of Guam (UOG) NSF INCLUDES Launch Pilot project, GROWING STEM, addresses the grand challenge of increasing Native Pacific Islander representation in the nation's STEM enterprise, particularly in environmental sciences. The project addresses culturally-relevant and place-based research as the framework to attract, engage, and retain Native Pacific Islander students in STEM disciplines. The full science, technology, engineering and mathematics (STEM) pathway will be addressed from K-12 to graduate studies with partnerships that include the Guam Department of Education, Humatak Community Foundation, Pacific Post-Secondary Education Council, the Guam Science and Discovery Society, the Society for the Advancement of Chicanos/Hispanics and Native Americans in Science (SACNAS) and the University of Alaska-Fairbaanks. As the project progresses, the project anticipates further partnerships with the current NSF INCLUDES Launch Pilot project at the University of the Virgin Islands.

Pilot activities include summer internships for high school students, undergraduate and graduate research opportunities through UOG's Plant Nursery and the Humatak Community Foundation Heritage House. STEM professional development activities will be offered through conference participation and student research presentations in venues such as the Guam Science and Discovery Society's Guam Island-wide Science Fair and SACNAS. Faculty will be recruited to develop a mentoring protocol for the project participants. Community outreach and extension services will expand public understanding in environmental sciences from the GROW STEM project. Project metrics will include monitoring the diversity of partners, increases in community engagement, Native Pacific Islander participation in STEM activities, the number of students who desire to attain terminal STEM degrees and the number of community members reached by pilot STEM extension and outreach activities. Dissemination of the GROWING STEM pilot project results will occur through the NSF INCLUDES National Network, partner annual conferences, and local, regional and national STEM conferences.
DATE: -
TEAM MEMBERS: John Peterson Cheryl Sangueza Else Demeulenaere Austin Shelton
resource project Public Programs
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.

This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
DATE: -
TEAM MEMBERS: Ming Wei Koh Ethan Allen
resource project Media and Technology
Worldwide, four million people participate in geocaching--a game of discovering hidden treasures with GPS-enabled devices (including smart phones). Geocachers span all ages and tend to be interested in technology and the outdoors. To share information about the Montana Climate Assessment (MCA), an NSF-funded scientific report, Montana State University created a custom trackable geocaching coin featuring the MCA Website and logo. We then recruited volunteers to hide one coin in each of Montana’s 56 counties. Volunteer geocachers enthusiastically adopted all 56 counties, wrote blogs and social media posts about the coins, and engaged local Scout troops and schools. Other geocachers then found and circulated the coins while learning about Montana’s climate. One coin has traveled nearly 4,000 miles; several have visited other states and Canada. 95% of the volunteers said the project made them feel more connected to university research, and they told an average of seven other people about the project. Nearly all of the participants were unfamiliar with the Montana Climate Assessment prior to participating. The geocaching educational outreach project included several partnerships, including with Geocaching Headquarters in Seattle (a.k.a. “Groundspeak”); Cache Advance, Inc., an environmentally friendly outdoor gear company; and Gallatin Valley Geocachers. An advisory board of geocachers helped launch the project.
DATE:
TEAM MEMBERS: Suzi Taylor Ray Callaway M.J. Nehasil Cathy Whitlock
resource research Museum and Science Center Programs
The National Autonomous University of Mexico (UNAM) is one of the world's single largest employers of science communicators, with over 350,000 students and 40,000 staff. Its science communication activities include five museums (Universum, Museo de la Luz, the Geology Museum, Museo de la Medicina Mexicana and Musem of Geophysics), botanical gardens, as well as a wide range of cultural and outreach activities. It has several programmes for training professional science communicators. The science communication staff are spread across the campuses in Mexico City and four other cities, including
DATE:
TEAM MEMBERS: Ana Claudia Nepote Elaine Reynoso-Haynes
resource project Media and Technology
Glaciers around the world are undergoing dramatic changes. Many people, however, have a limited understanding of the scope of these changes because they are geographically distant and difficult to visualize. Although both digital learning tools and online scientific data repositories have greatly expanded over the last decade, there is currently no interface that brings the two together in a way that allows the public to explore these rapidly changing glacial environments. Therefore, to both improve public understanding and provide greater access to already existing resources, the project team will develop the Virtual Ice Explorer to encourage informal learning about glacial environments. This web application will feature an immersive virtual environment and display a suite of environmental data for an array of Earth's glacial systems. An interactive globe will allow users to select from a collection of sites ranging from polar regions to tropical latitudes. Each featured site will offer users an opportunity to interact with (1) a 3D rendering of the landscape; (2) a local map of the site; (3) historical and contemporary photographs of the site; (4) background information text describing the location, past research, and climate impacts; and (5) available environmental data. One of the most original features of the application will be its realistic, immersive 3D rendering of glacial landscapes by combining very high-resolution digital elevation models and satellite imagery with the application's built-in capabilities for immersive virtual environments. Although immersive environments often require expensive equipment, we are maximizing accessibility by developing the Virtual Ice Explorer to run in a web browser and function across various devices. Thus, the application will be available to anyone with internet access, and they can explore at their own pace.

As part of the successful development of Virtual Ice Explorer, the project team will create a platform for digital elevation models to be visualized and explored in 3D by users within the web application; curate digital elevation models, maps, images, text, and environmental data for inclusion in the web application for up to 11 geographically diverse glaciers/glacial landscapes; iteratively user-test the web application with project partners; and design the architecture of the system to readily scale to a larger collection of glaciers/glacial landscapes. To extend dissemination of the final products, the team has partnered with the U.S. Geologic Survey to showcase four benchmark glaciers in their long-term Glaciers and Climate project. In addition to improving understanding of glacier systems in informal learning environments, the project team will explore applications for spatial learning, employment of 3D environments for educational interventions, and use of Virtual Ice Explorer in formal learning environments. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Jason Cervenec Jesse Fox Julien Nicolas
resource project Media and Technology
Polar Extremes: Enhancing Experiential Digital Learning is an integrated media and research project produced by the PBS science series, NOVA, that will bring polar science to informal learners through traditional storytelling and experiential, digital learning environments. Stark, cold, and seemingly frozen in time, the top and bottom of the Earth feel other-worldly, completely removed from our everyday existence. Yet, nothing could be further from the truth. The Arctic and Antarctic exert profound influence over our entire planet. Disturbances in these icy realms can send transformative ripples around the globe, altering the circulation of the atmosphere and oceans, and affecting every form of life. And although the poles might seem constant and everlasting, they--like our planet--are always changing, with a deep and complex past. NOVA will provide informal science learners access to specialized research happening at the ends of the earth, introducing them to today's scientists exploring the major drivers of the climate, uncovering the deep history of past paleoclimates, or perfecting climate and weather models. The project includes: a 2-hour nationally broadcast PBS documentary (working title Polar Extremes); a NOVA Polar Lab, an experiential interactive learning platform on polar science; and a Polar Exploration Initiative consisting of a 10-part YouTube series, a collection of 360 videos, virtual field trips, and social media reporting "on location" from Antarctica, along with other polar-themed video, radio and digital journalism. It also includes a research program conducted in collaboration with the University of California, Santa Barbara (UCSB) to study how narrative-driven and experiential learning can foster informal learning in polar science across a diverse array of audiences. NOVA, the most popular science program on television, with a robust digital presence, will bring current polar science to millions. NOVA will use a range of media to transport viewers to remote polar locations, to interact with polar scientists, manipulate polar data, or vicariously explore the frozen tundra--using a mix of learning approaches. This project will develop and test the impact of two forms of informal learning: traditional narrative-driven storytelling and active, experiential learning. Both components will be developed through audience research, formative evaluation or pilot testing, and experiments. The overarching goal is to determine the best way to combine and leverage traditional and interactive media technologies to educate the public about polar science. How can these modes enhance learning outcomes? The study uses the Informal Science Learning "strand framework" developed by the National Research Council in Learning Science in Informal Environments: People, Places, and Pursuits (2009). Because different age groups and socioeconomic backgrounds may engage differently with different types of learning materials and platforms, the project components are designed to test a variety of different learning approaches, with different audiences. This study will be one of the first to address the relative efficacy of various forms of experiential education and whether active versus vicarious experiential learning depends on the characteristics of the learners. As engagement technologies continue to evolve, this project will help inform how to best design and apply them effectively. The project will apply these new lessons specifically to present polar research to the public and to offer audiences an opportunity to explore and learn about these remote regions in new ways that bring them to life, make them relevant, and enhance learning outcomes. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Office of Polar Programs (OPP).
DATE: -
TEAM MEMBERS: Paula Apsell Lisa Leombruni Julia Cort Hunter Gehlbach
resource project Media and Technology
Lineage is a comprehensive educational media and outreach initiative that will engage individuals and families in learning about deep time and evolution, helping audiences come to newfound understandings of the connections between the past, present, and future of life on Earth. The project is a partnership between Twin Cities PBS (TPT) and the Smithsonian Institution's National Museum of Natural History and is linked to the opening of that museum's new Deep Time Fossil Hall in June 2019. The project includes a two-hour film for national broadcast on PBS, and a 20-minute short version for exhibition in science centers. The documentaries will show how scientists, using paleontology, genetics, earth science and other disciplines, can reconstruct in detail the origins of living animals like birds and elephants, revealing their ancient past as well as evidence of ecological change that can inform our understanding of Earth today. Extensive educational outreach will include the creation of "Bone Hunter," an innovative VR (Virtual Reality) game designed for family co-play that engages multiple players in the process of paleontology as they piece together a fossil in a digital lab. Bone Hunter and other collaborative educational activities will be deployed at Family Fossil Festivals that will attract multi-generational learners. One such Festival will take place at the Smithsonian Institution in Washington, D.C., while others will be based at geographically diverse institutions that serve underserved rural as well as urban communities. Lineage is a collaboration between national media producers, noted learning institutions and researchers, including Twin Cities Public Television, the Smithsonian Institution / National Museum of Natural History, Schell Games, the Institute for Learning Innovation (ILI), and Rockman et al. One of the project's primary innovations is its exploration of new learning designs for families that use cutting-edge technologies (e.g. the Bone Hunter virtual reality game) and collaborative multi-generational learning experiences that advance science knowledge and inquiry-based learning. An external research study conducted by ILI will investigate how intergenerational co-play with physical artifacts compared to virtual artifacts influences STEM (Science Technology Engineering Mathematics) learning and engagement. The findings will lead to critical strategic impacts for the field, building knowledge about ongoing innovation in the free choice learning space. The project's external evaluation will be conducted by Rockman et al and evaluative findings, as well as the educational materials derived from the project, will be widely disseminated through partnerships with professional and educator groups. Clips from the Lineage film and related learning resources will be hosted on PBS LearningMedia, so educators can incorporate these resources into their classrooms, and students and lifelong learners can explore and discover on their own. The project outcomes will have broad impact on public audiences, deepening and advancing knowledge and understanding about important scientific concepts, and promoting continued, family-based collaborative learning experiences to expand and deepen STEM knowledge. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning.
DATE: -
TEAM MEMBERS: Michael Rosenfeld Sarah Goforth Amy Bolton
resource project Professional Development, Conferences, and Networks
This ChangeMakers project builds on a 2016 National Academies report finding that scientific literacy can be understood at a community level as opposed to a traditional focus on the individual. This is important since scientific knowledge is often seen as abstract and distant from the daily concerns of average citizens. A community focus shifts the spotlight away from individual learning to collective learning facilitated by trusted cultural institutions serving as social assets. This work brings together scientific expertise and community organizations to advance operational science literacy--scientific ways of problem-solving--for community leaders and functional science literacy--information and skills people can use in their daily lives--among their service populations. This will be done by gathering and sharing knowledge and developing skills and abilities to contribute to the community's overall well-being.

The New England Aquarium (NeAq) and Aquarium of the Pacific (AoP) will apply a community engagement model involving active listening, documentation, alignment of concerns and goals, and co-development of shared solutions that serves the needs of all participants. As part of the Advancing Community Science Literacy (ACSL) project, multi-disciplinary teams from NeAq, AoP and their regional partners will participate in training on the model. They will apply that training to build and implement action plans to advance community-driven responses to local environmental issues. Teams will be assessed with respect to how they use tools from their shared training, along with peer support and coaching, to make progress in engaging diverse community stakeholders. Results of the evaluation will offer insights and recommendations for informal science learning centers to serve their communities more effectively as engagement facilitators and change agents to support science literacy development and action. By applying techniques developed for cultural institutions to communicate about climate science, and combining those with techniques developed for libraries and other organizations to help meet emergent community concerns, such as storm surges and coastal flooding, it is possible to redefine the role informal science learning centers can play as part of a community culture.

ACSL is funded by the Advancing Informal STEM Learning (AISL) program which supports projects that provide multiple pathways for broadening access to and engagement in STEM learning experiences, advances innovative research on and assessment of STEM learning in informal environments, and develops understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Billy Spitzer Julie Sweetland Richard Harwood John Fraser