Skip to main content

Community Repository Search Results

resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Sherry Hsi Darrell Porcello Hyun Joo
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource evaluation Media and Technology
YR Media (formerly Youth Radio) engages young people in digital media production that combines journalism, design, data, and coding. With support from the National Science Foundation (NSF), YR Media collaborated with the Massachusetts Institute of Technology’s App Inventor to launch WAVES — A STEM-Powered Youth News Network for the Nation. This three-year initiative expanded YR Media’s model of informal STEM education through the launch of a national platform that utilizes STEM-powered tools to create and distribute news stories, mobile apps, and digital interactives. Rockman et al, an
DATE:
resource evaluation Media and Technology
To explore the role and impact of The Innovation Lab at Youth Radio, Rockman et al, an independent research and evaluation organization, conducted an external evaluation of the project. With funding from the National Science Foundation’s Advancing Informal STEM Learning (AISL) program, the Innovation Lab sought to develop and research a scalable, evidence-informed theory of action to engage underrepresented youth in Science, Technology, Engineering, and Mathematics (STEM) learning through the collaborative creation and dissemination of original journalistic media, technology, and curriculum
DATE:
TEAM MEMBERS: Alex Gurn Kristin Bass Ellin O'Leary Elisabeth Soep Julia Hazer
resource research Media and Technology
SciGirls Strategies is a National Science Foundation–funded project led by Twin Cities PBS (TPT) in partnership with St. Catherine University, the National Girls Collaborative, and XSci (The Experiential Science Education Research Collaborative) at the University of Colorado Boulder’s Center for STEM Learning. This three-year initiative aims to increase the number of high school girls recruited to and retained in fields where females are traditionally underrepresented: technical science, engineering, technology, and math (STEM) pathways. We seek to accomplish this goal by providing career and
DATE:
TEAM MEMBERS: Rita Karl Bradley McLain Alicia Santiago
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This media and technology project will scale up Youth Radio's proven model of STEM education through youth-driven multimedia journalism and related app development using the MIT App Inventor. A new Youth News Network (YNN) will implement a nationwide feeder system of youth reporters and educators using the previously developed and proven STEM curriculum. Previous research and evaluation has demonstrated that this model can engage underserved youth and put them in leadership positions in technological innovation. Key deliverables include the YNN STEM Desk that will produce 15-20 STEM-related stories each year; bootcamps (1-3 day workshops) training youth around the country focusing on app development and media links; and new toolkits providing resources to help with app development, data analysis and other STEM-specific skills. Project partners include MIT Media Lab, National Public Radio, Best Buy's Teen Tech Centers, National Writing Project, Computer Clubhouses, and PBS Learning Media among others.

Over the previous eight years, research and evaluation findings had been used to refine the project. These data served as the foundation for this scale-up project. The research conducted by the investigator and the Scholar-in-Residence in this scale-up uses an embedded ethnographic approach that combines field notes, recorded meetings and discussions, media artifacts, etc.--data that is transcribed and coded for indicators of STEM learning and critical computational literacy. The external summative evaluation will build on prior evidence regarding how this unique model engages youth and impacts their skills in STEM related media and technology.
DATE: -
TEAM MEMBERS: Elisabeth Soep Ellin O'Leary Harold Abelson
resource project Media and Technology
This award supports the production of a longitudinal video documentary of the evolution of Advanced LIGO and will chronicle the most critical and exciting period in the history of gravitational wave science in the past 100 years. LIGO resumed the search for gravitational waves in 2015 with a newly upgraded detector and on September 14, 2015 detected gravitational waves for the first time, astounding not only the scientific community but the entire world. Using footage captured at critical periods between August 2015 and March 2016 during the discovery phase as well as new filming taking place over the next two years, the team will produce films which will impact at least hundreds of thousands of people and possibly many more than that. The goal is to educate, inspire, and motivate. Students at the high school and undergraduate levels may be more inspired to pursue STEM careers after watching scientific vignettes focusing on the exciting science and technology of Advanced LIGO. Scientific historians and sociologists will have the opportunity to use the hundreds of hours of available film clips as a video database to investigate in detail the discovery of gravitational waves as a case study of large scale collaborations ("Big Science"). Videos highlighting the cutting edge technological advances brought about by Advanced LIGO and their impacts on other fields of science and technology may prove effective for educating officials and policy makers on the benefits of fundamental science.

During the course of the project, a series of professionally made video shorts will be produced for the LIGO Laboratory and LSC for education and public outreach purposes through distribution on LIGO Laboratory, LSC web sites, and the LIGO YouTube Channel. Through an extensive series of film shoots, XPLR Productions will work with the LIGO Laboratory and the LIGO Scientific Collaboration (LSC) to capture key moments as LIGO scientists work to achieve Advanced LIGO's design sensitivity and carry out a series of observing runs over the next two years. The team will produce a series of video shorts explaining the important scientific and technological concepts and issues of Advanced LIGO by the scientific experts who create them. In the longer term, footage will used to produce either a feature length documentary film or a twelve-part series on television entitled 'LIGO' chronicling the discovery of gravitational waves and the exploration of exotic high-energy astrophysical phenomena such as colliding black holes. Intended for broad distribution through cinema or television, 'LIGO' will bring science to life for a wide audience.
DATE: -
TEAM MEMBERS: David Reitze
resource evaluation Media and Technology
Rockman et al (REA), a San Francisco-based research and evaluation firm, conducted the external evaluation for Youth Radio's DO IT! program, which was funded by the National Science Foundation. Building upon Youth Radio's previous Science and Technology Program, the DO IT! initiative consisted of three primary components that promoted STEM (science, technology, engineering, and mathematics) learning by training underserved youth in cutting-edge digital technologies: (1) Brains and Beakers: Young people hosted a line-up of investigators and inventors for demo-dialogues at Youth Radio's studios
DATE:
TEAM MEMBERS: Rockman et al | Youth Radio Kristin Bass Julia Hazer
resource evaluation Media and Technology
WGBH received funding to develop and create NOVA Labs, an online environment that provides teen audiences with an online research lab, educational content, and the opportunity to engage with authentic data, tools, and processes to investigate scientific questions. This work has begun with the development of a first pilot lab, called The Sun Lab. NOVA Education created and launched this lab in early summer 2012. Examining the site in its pilot form, the Lifelong Learning Group (LLG) engaged in a formative evaluation to support refinements and improvements in the design of subsequent NOVA Lab
DATE:
TEAM MEMBERS: NOVA Brooke Havlik Jessica Sickler
resource project Media and Technology
NOVA Labs (pbs.org/nova/labs) is a free digital platform that engages teens and lifelong learners in activities and games that foster authentic scientific exploration. From building RNA molecules and designing renewable energy systems to tracking cloud movements and learning cybersecurity strategies, NOVA Labs participants can take part in real-world investigations by visualizing, analyzing, and playing with the same data that scientists use. Each Lab focuses on a different area of active research. But all of them illustrate key concepts with engaging and informative videos, and guide participants as they answer scientific questions or design solutions to current problems. Supporting pages on each Lab site explain the purpose and functions of the Lab, help teachers incorporate it into their classrooms, foster collaboration between users, and help users make connections to the broader world of STEM. Users are encouraged to explore potential career paths through “Meet the Scientists” profiles, and to obtain information about local and national STEM resources.
DATE:
TEAM MEMBERS: NOVA Brooke Havlik
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes the PBS NewsHour STEM Learning project, a broadcast and online science journalism and informal science education initiative to report breaking science news and cutting-edge STEM (Science, Technology, Engineering and Mathematics) research and researchers to a national audience.
DATE:
TEAM MEMBERS: Patti Parson
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell