Skip to main content

Community Repository Search Results

resource project Exhibitions
The Maryland Science Center (MSC), in collaboration with Johns Hopkins University (JHU), the University of Maryland, Baltimore (UMB), and Morgan State University (MSU), has sought the support of the National Institutes of Health SEPA (Science Education Partnership Award) Program to develop "Cellular Universe: The Promise of Stem Cells," a unique exhibition and update center with related programs that highlight the most current science in cell biology and stem cell research. Visitor surveys have shown that science museum visitors are very interested in learning about stem cell research, but know little about the science of stem cells or cell biology, which form the basis of stem cell research. The goal of this project is to help visitors learn about advances in cell biology and stem cells so that they will make informed health-related decisions, explore new career options, and better understand the role of basic and clinical research in health advances that affect people's lives. Topics to be covered include the basic biology of cells, the role of stem cells in human development, current stem cell research and the clinical research process. This exhibition will also address the controversies in stem cell research. Our varied advisory panel, including cell biologists, physiologists, adult and embryonic stem cell researchers and bioethicists, will ensure the objectivity of all content. "Cellular Universe: The Promise of Stem Cells" will be a 3,500 square-foot exhibition to be planned, designed and prototyped in Fall 2006-Winter 2009, and installed in MSC's second-floor human body exhibition hall in Spring 2009. This exhibition will build on the successful model of "BodyLink," our innovative health science update center funded by a 2000 SEPA grant (R25RR015602) and supported by partnerships with JHU and UMB.
DATE: -
TEAM MEMBERS: Roberta Cooks
resource project Media and Technology
The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
DATE: -
resource project Public Programs
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE: -
TEAM MEMBERS: Kurt Thoroughman Gregory DeAngelis Randy Buckner Steven Petersen Dora Angelaki
resource project Public Programs
"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE: -
TEAM MEMBERS: Robert Coulter Eric Klopfer Jere Confrey
resource project Public Programs
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).

The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).

There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
DATE: -
resource project Media and Technology
Space Science Institute (SSI) is conducting an International Polar Year project in partnership with the Marine Advanced Technology Center (NSF-funded MATE, Monterey, CA) and the Challenger Learning Center of Colorado (CLCC) to produce and disseminate an online simulation of scientific explorations by the latest generation of Antarctic underwater remotely operated vehicles (ROV). The explorations are based on the ROV work of Dr. Stacey Kim of the Moss Landing Marine Laboratories and of Dr. Robert Pappalardo and Dr. Arthur Lane at the Jet Propulsion Lab. Products include the simulation, supporting materials and guides, a web site, and a CD Master. Targeted audiences include: (a) middle-school to college-aged students who participate in national annual underwater ROV competitions, (b) Challenger Learning Centers in Colorado and around the country, and (c) the "science attentive" public who will access the simulation via links to SSI and other web sites. Simulations will follow a game structure and feature Antarctic polar science. Estimated annual usage levels are: for MATE, 2000; for Challenger Centers, 300,000; for the general public, 100,000. The project is positioned to continue well beyond the official end of the International Polar Year
DATE: -
TEAM MEMBERS: Brad McLain James Harold
resource project Media and Technology
Sea Studios Foundation will extend the Strange Days on Planet Earth multimedia initiative to raise public science literacy on pressing environmental issues. Based on pioneering Earth System Science research, Phase Two will be a media and outreach project focused on the ocean and water issues. The goal of the project is to increase public awareness and understanding of the scope and scale of key issues affecting the ocean. At the core of the project is a four part television documentary series for PBS primetime entitled Strange Days, Ocean. The programs will concentrate on four content areas: overexploitation of ocean resources, pollution, coastal development, climate change and the role of the ocean in Earth's system. Each episode is structured around a compelling scientific questions designed to engage the audience in a search for answers based on the most current research from the varied Earth System Science disciplines. The series focuses on explaining how scientists come to know what they know. The series will be complemented by activity-based learning supported by a national consortium of informal learning institutions, a citizen science program, training sessions for informal educators, and a project website. Collaborators include the National Geographic and three new major partners: Monterey Bay National Marine Sanctuary Program to expand citizen science programs around invasive species; Americans for Informed Democracy (AID), dedicated to organizing college campus educational events; The Ocean Project (TOP), a network of 600 organizations; plus the Arizona Sonora Desert Museum and eight other informal science institutions. Knight Williams Research Communications, and Public Knowledge and Cultural Logic will assess the impact of the series. The project will contribute to the field of informal science education by providing widely applicable communication lessons on ocean and water issues and a model methodology for creating science education media that is credible, informative, and relevant. The results of two unique adult learning case studies will be shared with the field through presentations at national meetings and workshops, and posted online.
DATE: -
TEAM MEMBERS: Mark Shelley David Elisco Tierney Thys
resource project Public Programs
The Astronomical Society of the Pacific, in collaboration with the Institute for Learning Innovation, will implement "Sharing the Universe." This research and implementation project is designed to include both a comprehensive, two-phased research component, as well as a large-scale national dissemination. The intended impacts are to improve the quality and effectiveness of informal science education activities provided by amateur astronomers; increase the frequency of public engagements in astronomy; and broaden the variety of events and diversity of the outreach to include underserved and underrepresented audiences. The project will create a community of practice using club leaders to improve astronomy clubs nationwide through research tools, training and outreach skills. Project deliverables include Phase I research which is designed to gain an understanding of how outreach-orientated clubs function and identify strategies that make successful clubs effective. Phase II will examine a core group of 20 clubs in detail to further understand the outreach culture while using interventions developed from the Phase I results such as a training DVD, Online Resource Library, Outreach Toolkit and a robust community of practice. The final deliverable will be the dissemination of proven strategies and best practices revealed by the research to 200 diverse astronomy clubs across the country. Strategic impact will be realized in increased outreach capacity among amateur astronomers and a strong model for astronomy clubs with proven best practices and resources. It is anticipated this project will reach more than 4,400 amateur astronomers and indirectly impact more than one million Americans in astronomy clubs in four years. Inverness Research will conduct the summative evaluation of the project.
DATE: -
TEAM MEMBERS: James Manning Martin Storksdieck Eric Jones Michael Bennett Greg Schultz
resource project Public Programs
Brown University, a founding member of the 72-member New England Science Center Collaborative (NESCC), is leading Seasons of Change, a traveling exhibit development project involving members of NESCC as well as the 31-member North Carolina Grassroots Science Museums Collaborative. The key concept of the exhibit is how regional iconic "harbingers" are related to climate change - for example, the impacts of a changing climate on the maple syrup industry in New England and shifts in bird migration patterns in North Carolina. Two customizable and modularized versions of an approximately 900 square foot exhibit on local impacts of climate change are being produced for small and medium-sized venues. The project expects to serve approximately 1.5 million visitors in the two regions and is positioned as an innovative model for other regions of the country. A citizen science program will be developed by staff at TERC for those participating centers with outdoor venues. The exhibit is being designed by Jeff Kennedy Associates and MegaFun simulation software designers. NESCC is also developing a project Web site. Goodman Research Associates is conducting both formative and summative evaluation processes on visitor learning and on the project's collaborative process. The Association of Science-Technology Centers will manage the two tours.
DATE: -
TEAM MEMBERS: Steven Hamburg Richard Polonsky
resource project Exhibitions
The Smithsonian Institution Astrophysical Obervatory will develop the Black Hole Experiment Gallery, a 2,500 sq ft traveling exhibition that will let visitors explore recent breakthroughs in astronomical research on black holes. Intended audience impacts are to deepen understanding of the nature of scientific discovery, enhance interest in and knowledge of our unfolding universe, and foster appreciation of a broader view of science. The exhibition will be accompanied by a portfolio of educational materials and programs, and website. The exhibition will provide a testbed of emerging networking and personalization technologies. Based on partnerships with community-based programs in Oakland, Baltimore, and Boston, underserved teens will assist in the development of exhibits and programs. A video case study for science museum staff professional development will document the exhibition development and decision-making processes used. This exhibition will travel to 9 to 12 science centers on a national tour, reaching some 1.5 million visitors.
DATE: -
TEAM MEMBERS: Roy Gould Mary Dussault
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource project Professional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
DATE: -
TEAM MEMBERS: Judy Nee Elizabeth Stage Dennis Bartels Lucy Friedman Jane Quinn Pam Garza Gabrielle Lyon Jodi Grant Frank Davis Kris Gutierrez Bernadette Chi Carol Tang Mike Radke Jason Freeman Bronwyn Bevan Leah Reisman Sarah Elovich Kalie Sacco