Skip to main content

Community Repository Search Results

resource project Public Programs
This exploratory learning research and design project will study how to use emerging technologies to help document practices in maker-based learning experiences. Despite its established potential for consolidating learning and sense-making, project documentation is often overlooked, not prioritized or seen as burdensome and therefore not integrated into the learning experiences. The project team seeks to understand and address with practice partners the barriers to documentation by systematically exploring how to physically embed and incorporate smart tools and documentation practices into learning environments, specifically creative hands-on learning spaces, like makerspaces. The goal is to understand how to scaffold learners to become more aware, reflective and attentive to their progress towards learning outcomes by embedding supportive tools physically in space as the actions unfold. Making and maker-based learning experiences offer tremendous opportunities to more fully engage diverse learners in STEM education and build a workforce prepared for innovation. Documentation of these learning experiences, both as an authentic practice that professionals engage in as well as an assessment practice for instruction, is often not supported. The project will create open source documentation for solutions and develop supporting case studies, web resources and guides to facilitate easy uptake and adoption of promising approaches.

This proposal will make significant research contributions in three ways: (1) develop and iteratively test a suite of embedded "smart" tools designed to scaffold, manage and trace process documentation practices; (2) study the integration of these tools in formal and informal activities and programs settings and characterize their influence on instruction and the assessment of learning outcomes; (3) establish a set of rubrics based on learner data streams to aid instruction and mark learner progress. Improving documentation practices and the assessment of learning outcomes will advance making as a core STEM educational activity. Through a better understanding of why and how to place networked documentation tools sensitive to space, time and context cues, the threshold for enactment and scaffolded usage can be lowered in a broader range of settings. Ultimately, this exploratory project will not only develop an integrated set of situated documentation tools, but also help us develop hypotheses for how documentation as a mediating process productively supports learning.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The Multimedia Immersion (MI) project is will develop, pilot, and evaluate a nine-week STEM-rich multimedia production course for high school students. MI will make important contributions to the field through its efforts to design and evaluate the promises and challenges of a nine-week multimedia curriculum in multiple urban high schools. The MI course will engage teams of students to develop a personally and socially relevant storyline that guides their use of accessible audio and video technologies to create a five-minute animated video. To develop student STEM experience and provide technical support, the project will provide guidance and learning experiences in engineering (e.g., criteria, constraints, optimization, tradeoffs), science (e.g. sound, light, energy, mechanics) and multimedia technologies (e.g., computer based audio production, video editing and visualizations through animatics (i.e., shooting a succession of storyboards with a soundtrack). animatics).

Because the curriculum situates engineering and science learning in the context of multimedia production, there are natural synergies with several existing high school courses including engineering design, audio/video media production, and multimedia technology. Although these courses are typically electives in high school, developing a 5-minute animated short on a topic of interest may encourage girls and students from underrepresented groups to select this course over other electives. MI will impact 10 teachers and approximately 250 high school students per year. The project will result in the following resources: nine-week curricular unit (multimedia, science, engineering); assessments to monitor student learning of science, engineering and technology (design logs); and research on changes in student knowledge, interest, and a nine-week curricular unit (multimedia, science, engineering). Project resources will be disseminated to teachers, researchers, and curriculum and professional development providers via conference presentations, publications, and online webinars.

The MI project builds on student familiarity and interest in music, video and technology to promote an: (1) understanding of engineering design and physics and an (2) an appreciation of the fundamental role of STEM in popular culture. Project evaluation will be conducted using student surveys and an examination of work products in conjunction with implementation challenges and successes to generate evidence for the feasibility and utility of a high school multimedia course that explicitly addresses science and engineering learning. Project evaluation will use student design logs as a window into student design processes and conceptual understanding. Student design logs are an essential feature of MI curriculum design. With an appropriate structure, these design logs can inform teaching, afford an opportunity for students to reflect on their own work, and provide evidence of student thinking and learning for assessment purposes. Using student design logs as a window into students? design process and conceptual understanding is an important contribution to the engineering education community which has few options for measuring student knowledge in ways that are consistent with the hands-on, iterative nature of the design process.
DATE: -
TEAM MEMBERS: Marti Louw Daragh Byrne Kevin Crowley
resource project Media and Technology
Reconceptualizing STEM + Computing Literacy is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance multidisciplinary integration of computing and computational thinking in K-12 science, technology, engineering, and mathematics (STEM) teaching and learning through applied research and development across one or more domains, and broadening participation in computing and computing-related fields. The project will study the integration of computational thinking as part of a new and more contemporary perspective of STEM literacy, and will design, develop, and beta-test a prototype literacy assessment tool that will measure computational thinking literacy along with measures of literacy in other STEM content areas. The tool will be available to the general public as a self-measurement application (App) that can be used by individuals to test their own literacy, and by teachers, schools, and informal educators and organizations to assess literacy development in their students and in their STEM education programs. This transdisciplinary research project will begin the process of creating an innovative approach and tool for measuring literacy that will expand the definition of literacy to include computational skills along with science reasoning. Literacy is an important concept and measurement that has traditionally been used to assess an individual's knowledge of science. This project will explore a broader literacy perspective that incorporates learning derived from out of school and one that incorporates computational skills and thinking as part of a more contemporary perspective of STEM literacy. A prototype web-based App allowing individuals and education organizations to assess literacy levels, and ways to enhance literacy, will be developed and studied. The methodology will be developed using discussions and knowledge from over 60 experts across computing, education, science, social science, and other STEM fields using a Delphi method to engage in reconceptualization of literacy. The hypothesis is that this new STEM+C literacy framework should be structured along four interacting but semi-independent domains: 1) general STEM+C knowledge; 2) self-defined areas of STEM+C knowledge and expertise; 3) attitudes and beliefs related to STEM+C; and 4) the skills and competencies necessary to participate in STEM+C related pursuits and discussions, including measures of modes of STEM+C thinking. Each of these four domains is likely to include numerous sub-domains and associated descriptors, which collectively describe the different aspects of being a STEM+C literate citizen. The application will be designed to provide feedback to individuals on their knowledge, attitudes and skills compared with those of others and suggest ways to enhance and improve their skills and understanding through an embedded feedback mechanism. This project creates public benefit by providing individuals and organizations with a responsive real-time understanding measuring STEM+C literacy, deepening the dialogue about the value of public engagement in science, engineering, technology, math and computing and revealing the dynamic factors that inform STEM+C literacy.
DATE: -
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This AISL project investigates how informal programs can broaden participation by building social capital in STEM for youth from underrepresented groups. The project integrates social network analysis with research on informal learning, and draws on a framework to connect learning across a variety of sectors. It builds on evidence that sponsorship of youth interest, affinity-based mentorship, and brokering connections to other settings and opportunities can build social capital and support interest and persistence in STEM. It represents a strategic and timely investment into research that solidifies these emerging insights from research and practice, conducting focused investigation into relational supports for STEM interests that are particularly well suited to informal programs.

The project is guided by two research questions: (1) What forms of social capital are tied to persistence in and connecting across informal STEM programs for youth from underrepresented groups? (2) What program features--specifically sponsorship, mentorship, and brokering--grow these social supports for persistence in and connecting across informal STEM programs for underserved youth? These questions are addressed through a mixed methods 18-month cross-sectional study of 200 students in three informal programs in Orange County, California that offer project-based engineering and coding programs, support mentorship, and focus on groups underrepresented in STEM. The sample will include three age categories, capturing the transition to high school, persistence during high school, and transition to college and career. Teens will be interviewed three times at 6-month intervals, spanning these transitions. The goal of this research and effort is to determine if social capital plays an extra ordinary role in learning by this group.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mizuko Ito
resource project Media and Technology
This project tackles the urgent needs of the nation to engage people of all ages in computational thinking and help them learn basic computer science concepts with a unique and innovative approach of structured in-game computer program coding. Researchers will explore the design and development of a 3D puzzle-based game, called May's Journey, in which players solve an environmental maze by using the game's pseudo code to manipulate game objects. The game is designed to teach introductory but foundational concepts of computer programming including abstraction, modularity, reusability, and debugging by focusing players on logic and concepts while asking them to type simple instructions in a simplified programming language designed for novices. The game design in this project differs from today's block-based programming learning approaches that are often too far from actual computer code, and also differs from professional programming languages which are too complex for novices. The game and its embedded programming language learning are designed to be responsive to the progress of the learner throughout the game, transitioning from pseudo code to the embedded programming language itself. Error messages for debugging are also designed to be adaptive to players' behavior in the game. Using extensive log data collected from people playing the game, researchers can study how people learn computer programming. Such knowledge can advance understanding of the learning processes in computer programming education. Additionally, this work emphasizes the use of games as informal learning environments as they are accessible and fun, drawing attention and retention of many learners of different age groups with the potential to change attitudes towards computer programming across different populations. This project is co-funded by the STEM + Computing (STEM+C) program that supports research and development to understand the integration of computing and computational thinking in STEM learning, and the Advancing Informal STEM Learning (AISL) program that funds innovative research, approaches and resources for use in a variety of settings with its overall strategy to enhance learning in informal environments.

The project's formative and summative evaluation methods, including surveys, expert reviews of learners' computer code developed in the game, and interviews, are used to gauge learners' engagement as well as learning. In exploring learning, researchers aim to understand how players build implicit computer science knowledge through gameplay and how that gameplay relates to their performance on external transfer tasks. The project will answer the following three research questions: (1) Can observers reliably detect and label patterns of gameplay that provide evidence of learning or misconceptions regarding the four computer science constructs - abstraction, modularity, debugging and semantics - that learners exhibit playing May's Journey? (2) How does learner's implicit knowledge of these computer science constructs change over time and do those patterns vary by gender and prior programming experiences? (3) Is there a strong correlation between implicit learning measures and transfer of CS concepts: modularity, debugging, semantics, and abstraction? How do these correlations vary across elements of the game? This work will result in several outcomes: game design metaphors tested for their learning and engagement value that can be abstracted and embedded in different games. This project will also contribute patterns and an understanding of how people learn and engage in problem solving using concepts of abstraction, modularity, debugging and semantics. These outcomes will lead to advancement in knowledge in the learning sciences as well as the design of educational games that enrich STEM learning, particularly in programming and computational thinking. In addition, this project will engage female participants and underserved populations through partnering organizations including National Girls Collaborative project.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Magy Seif El-Nasr
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This Pilots and Feasibility Studies project will design and study computer science education programs in three New York State prisons and cutting-edge computer science learning spaces in New York City and Bennington, VT for recently released men and women. These two sites of investment will be designed and operated with the goals of bridging informal STEM education inside the prison and post-release. The project aims to help incarcerated and formerly incarcerated men and women gain hands-on experience and technical fluency in computer science. The project will also help people build effective pathways that link training and informal learning communities in prison to professional and educational success after prison.

The research will examine how informal STEM learning can 1) provide incarcerated and post-incarceration populations more effective pathways into computer science and technology professions, and 2) help revitalize neighborhoods struggling with high rates of incarceration and high rates of adults under correctional supervision. Results will be shared among the STEM learning community and prison educators through existing networks, scholarly and journalistic publications, and conferences. As a pilot program, this project aims to develop a comprehensive, rigorous, and transferable model that may be used as a resource in other prison education programs as well as in rural and urban communities across the United States seeking to address economic and educational inequalities of post-incarceration life.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Andrew Cencini David Bond Jed Tucker
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. The pilot and feasibility study will develop instructional workshops for an adult population of quilters to introduce them to computational thinking. By leveraging pre-existing social structures, skill sets, and engagement in quilting, the researchers hope to help participants develop computer science and computational thinking knowledge and skills. The long-term goal is to broaden public awareness of computational thinking and build links between computer science and other areas of interest. By leveraging the social structure and existing skills held by practicing quilters, the workshops have the potential to reach an audience of millions of quilters around the nation and worldwide, the majority of whom are adult women. The research will be developed and tested with two groups: the Orlando Modern Quilt Guild in Orlando, FL, and an informally gathered quilting class in the Worcester, MA area. Outcomes for the project include workshop materials that can be used in a variety of quilting group contexts nationwide, a deeper understanding of the processes and mechanisms for adult computer science education through crafts, and evaluation of the pilot workshop focused on the impact on participants' engagement, self-identity, and learning for computational thinking. The research especially focuses on leveraging pre-existing knowledge, interests, and social structures to draw connections to computational thinking, and studying how this impacts participants' self-described identity, attitude, and engagement with computer science. The project also assesses a novel method for teaching computational thinking that has potential for broad applicability in a variety of social and creative hobbies. Participants will use and modify generative design software that creates quilt designs and, in doing so, learn how creative interests can be expanded through computer science. By focusing on the hobby of quilting, which is not typically associated with computer science, the knowledge built through designing and evaluating the research offers strategies for altering public perception of computer science. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Gillian Smith Anne Sullivan
resource project Public Programs
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project will research the educational impact of social robots in informal learning environments, with applications to how social robots can improve participation and engagement of middle-school girls in out-of-school computer science programs in under-resourced rural and urban areas. The use of robots to improve STEM outcomes has focused on having learners program robots as tools to accomplish tasks (e.g., play soccer). An alternate approach views robots as social actors that can respond intelligently to users. By designing a programmable robot with social characteristics, the project aims to create a culturally-responsive curriculum for Latina, African American, and Native American girls who have been excluded by approaches that separate technical skill and social interaction. The knowledge produced by this project related to the use and benefits of social programmable robots has the potential to impact the many after-school and weekend programs that attempt to engage learners in STEM ideas using programmable robot curricula.

The project robot, named Cozmo, will be programmed using a visual programming language and will convey emotion with facial expressions, sounds, and movements. Middle school girls will engage in programming activities, collaborative reflection, and interact with college women mentors trained to facilitate the course. The project will investigate whether the socially expressive Cozmo improves computer science outcomes such as attitudes, self-efficacy, and knowledge among the middle school female participants differently than the non-social version. The project will also investigate whether adding rapport-building dialogue to Cozmo enhances these outcomes (e.g., when a learner succeeds in getting Cozmo to move, Cozmo can celebrate, saying "I can move! You're amazing!"). These questions will be examined research conducted with participants in multi-session after-school courses facilitated by Girl Scout troops in Arizona. The project will disseminate project research and resources widely by sharing research findings in educational and learning science journals; creating a website with open source code for programming social robots; and making project curriculum and related guidelines available to Girl Scouts and other educational programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Ogan Erin Walker Kimberly Scott
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is a two-day conference, along with pre- and post-conference activities, with the goal of furthering the informal science learning field's review of the research and development that has been conducted on data visualizations that have been used to help the public better understand and become more engaged in science. The project will address an urgent need in informal science education, providing a critical first step towards a synthesis of research and technology development in visualization and, thus, to inform and accelerate work in the field in this significant and rapidly changing domain.

The project will start with a Delphi study by the project evaluator prior to the conference to provide an Emerging Field Assessment on data visualization work to date. Then, a two-day conference at the Exploratorium in San Francisco and related activities will bring together AISL-funded PIs, computer scientists, cognitive scientists, designers, and technology developers to (a) synthesize work to date, (b) bring in relevant research from fields outside of informal learning, and (c) identify remaining knowledge gaps for further research and development. The project team will also develop a website with videos of all presentations, conference documentation, resources, and links to social media communities; and a post-conference publication mapping the state of the field, key findings, and promising technologies.

The initiative also has a goal to broaden participation, as the attendees will include a diverse cadre of professionals in the field who contribute to data visualization work.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource research Games, Simulations, and Interactives
It is a well-documented fact that women and minorities are currently underrepresented in STEM higher education degree programs and careers. As an outreach measure to these populations, we established the Hexacago Health Academy (HHA), an ongoing summer program. Structured as an informal learning environment with a strong youth initiated mentoring component, HHA uses game-based learning as both a means of health education and stimulating interest in careers in medicine among adolescents from underrepresented minority populations. In this article, we describe the 2015 session of the Hexacago
DATE:
TEAM MEMBERS: Megan Macklin Patrick Jagoda Ian B. Jones Melissa Gilliam
resource evaluation Media and Technology
The Science Behind Pixar (SBP) exhibition was the product of a collaborative effort among the Museum of Science, Boston (MOS), Pixar Animation Studios, and the Science Museum Exhibit Collaborative (SMEC). The 13,000 square foot exhibition presented the science, math, and computer science behind Pixar Animation Studios’ animated films and innovation. Before entering SBP, visitors watched a five-minute film that oriented them to the exhibition and discussed its main messages. Visitors then interacted with screen-based and physical interactive exhibits, as well as the technical pipeline of the
DATE:
resource research Media and Technology
In this literature review, we seek to understand in what ways aspects of computer science education and making and makerspaces may support the ambitious vision for science education put forth in A Framework for K-12 Science as carried forward in the Next Generation Science Standards. Specifically, we examine how computer science and making and makerspace approaches may inform a project-based learning approach for supporting three-dimensional science learning at the elementary level. We reviewed the methods and findings of both recently published articles by influential scholars in computer
DATE:
TEAM MEMBERS: Samuel Severance Susan Codere Emily Miller Deborah Peek-Brown Joseph Krajcik
resource research Media and Technology
As the maker movement is increasingly adopted into K-12 schools, students are developing new competences in exploration and fabrication technologies. This study assesses learning with these technologies in K-12 makerspaces and FabLabs. Our study describes the iterative process of developing an assessment instrument for this new technological literacy, the Exploration and Fabrication Technologies Instrument, and presents findings from implementations at five schools in three countries. Our index is generalizable and psychometrically sound, and permits comparison between student confidence
DATE:
TEAM MEMBERS: Paulo Blikstein Zaza Kabayadondo Andrew P. Martin Deborah A. Fields