Skip to main content

Community Repository Search Results

resource research Media and Technology
The popularity of the anti-vax movement in the United States and elsewhere is the cause of new lethal epidemics of diseases that are fully preventable by modern medicine [Benecke and DeYoung, 2019]. Creationism creeps into science classrooms with the aim of undermining the teaching of evolution through legal obligations or school boards’ decisions to present both sides of a debate largely foreign to the scientific community [Taylor, 2017]. And one simply has to turn on the TV and watch so-called science channels to be bombarded with aliens, ghosts, cryptids and miracles as though they are
DATE:
TEAM MEMBERS: Alexandre Schiele
resource research Media and Technology
How a discipline's history is written shapes its identity. Accordingly, science communicators opposed to cultural exclusion may seek cross-cultural conceptualizations of science communication's past, beyond familiar narratives centred on the recent West. Here I make a case for thinking about science communication history in these broader geotemporal terms. I discuss works by historians and knowledge keepers from the Indigenous Australian Yorta Yorta Nation who describe a geological event their ancestors witnessed 30,000 ybp and communicated about over generations to the present. This is likely
DATE:
TEAM MEMBERS: Lindy Orthia
resource evaluation Public Programs
The pilot test of a capacity building program integrating strategic discourse & community change theory identified a new path for advancing community STEM literacies. The results of experiment established partnerships with locally based non-profits working to address environmental justice and social disparities in areas threatened by climate change identified five recommendations to reset the role of ISLC’s as more relevant to the communities: 1) Allocate Time to Build Relationships; 2) Develop a Shared Definition of Resilience; 3) Situate Community Aspirations as Context for STEM Learning; 4)
DATE:
TEAM MEMBERS: John Fraser Billy Spitzer Rupu Gupta Nicole LaMarca Kathryn Nock
resource project Public Programs
An ecosystems model of learning suggests there are critical partners within and across a community that support learning across the lifespan. These school-community partnerships, developed with shared accountability and goals, are essential to rural students given the lack of economic and geographic access to such services. Youth in rural areas may have limited opportunities to engage with professionals. The team proposes to overcome this gap by capitalizing on the wide-spread interest in archaeology to teach critical thinking using STEM concepts and testing components of a partnership program. This project will advance knowledge on multidisciplinary STEM education by iteratively developing and researching an after-school program in which youth engage in multidisciplinary inquiry in the context of archeology. Mentored by archaeologists, rural youth and citizen scientists will use concepts and tools drawn from biology, ecology, geospatial science, mathematics, physics, and data science to identify and answer questions related to the history of their local region. An outcome of this project will be a road map for moving from a feasibility project to a larger implementation project locally and an understanding of community partnerships engaging more broadly.

Researchers at SUNY Binghamton will conduct a mixed-methods research study that examines the ways in which participation in a multidisciplinary after-school archaeology program supports the development of STEM identities among rural youth in sixth through eighth grades. The research team will use content analysis to analyze field notes from observations, as well as transcripts from focus groups and interviews with the youth. They will use inferential statistics to explore changes in the youths' STEM identity using an identity survey, which will be administered to the youth before and after participation in the program. Additionally, the research team will conduct qualitative research that explores shifts in the afterschool program providers' perceptions about supporting middle school youth as STEM learners. The program providers are comprised of graduate and undergraduate archaeology students, citizen scientists, and professional archaeologists. The course modules developed for the after-school program will be disseminated through professional networks and organizations dedicated to archaeologists and informal educators, and empirical findings will be shared widely via peer-reviewed publications. This project is funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This Pilots and Feasability Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Laurie Miroff Nina Versaggi Amber Simpson Luann Kida Lynda Carroll
resource research Media and Technology
Today, science and politics are in a complex status of reciprocal dependency. Politics is dependent on scientific expertise in order to adequately address highly complex social problems, and science is fundamentally dependent on public funding and on political regulation. Taken together, the diverse interactions, interrelations and interdependencies of science and politics create a heterogenous and complex patchwork — namely, the science-policy interface. The societal relevance for phenomena such as scientific policy advice, science governance or (politically fostered) science communication
DATE:
TEAM MEMBERS: Birte Fähnrich Alexander Ruser
resource research Media and Technology
At the beginning of May, 2018, the European Commission has presented its proposal for Horizon Europe, the framework programme which defines priorities and budget distribution for the future of European Research and Innovation (2021–2027). The announcement has raised concerns within the community of stakeholders engaged in Responsible Research and Innovation (RRI), a democratization process leading to connecting science to the values and interests of European citizens by mean of participatory processes. Through this flash commentary we aim at providing a wide range of arguments, as well as
DATE:
TEAM MEMBERS: Marzia Mazzonetto Angela Simone
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource research Public Programs
This poster was presented at the 2019 AISL PI Meeting, and describes the the ongoing research questions and goals of the Ute STEM Project, which explores the integration of the traditional ecological knowledge (TEK) of the Ute Indians of Colorado and Utah and Western science, technology, engineering and math (STEM).
DATE:
TEAM MEMBERS: Liz Cook Shannon Voirol Sheila Goff Cassandra Atencio Garrett Briggs Alden Naranjo Betsy Chapoose Terry Knight, Sr. Nicole Shurack Richard Ott Carl Conner Kelly Kindscher Kate Livingston
resource research Public Programs
Citizen science, the active participation of the public in scientific research projects, is a rapidly expanding field in open science and open innovation. It provides an integrated model of public knowledge production and engagement with science. As a growing worldwide phenomenon, it is invigorated by evolving new technologies that connect people easily and effectively with the scientific community. Catalysed by citizens’ wishes to be actively involved in scientific processes, as a result of recent societal trends, it also offers contributions to the rise in tertiary education. In addition
DATE:
TEAM MEMBERS: Susanne Hecker Muki Haklay Anne Bowser Zen Makuch Johannes Vogel Aletta Bonn
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This Research in Service to Practice project will study how visual immersion and interactivity in augmented reality (AR) affects visitors' engagement and understanding of science. The research involves creating different versions of an AR exhibit to communicate paleontology research from the La Brea Tar Pits to the general public. Different versions of the exhibit will be compared to learn how design choices for immersion and interactivity impact visitors' engagement and understanding of science. The result of this study should be a model to follow for similar public exhibits, as well as design principles that generalize to AR experiences for a broader range of informal learning environments. This project will also demonstrate and report on specific AR mechanisms that help visitors understand the scientific process and increase knowledge about paleontology research.

The study includes a user-centered design and evaluation process with both formative and comparative studies. This project investigates two high-level design factors for mobile AR: visual immersion and interactivity. These impact the learning experience and the development so extensively that multiple versions are seldom compared. These factors also have unique considerations for informal settings, such as how to balance immersion against situational awareness (e.g., 3D viewers reduce field of view). One goal of this project is to systematically compare qualitatively different AR designs that convey equivalent science content and study these tradeoffs empirically. The second goal is to leverage these findings to publicly release an AR experience that promotes engagement, increases understanding of science, and reduces scientific misconceptions. This research will also contribute to understanding usability and logistical issues for different AR designs for public, outdoor, informal settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Emily Lindsey Benjamin Nye Gale Sinatra William Swartout
resource project Exhibitions
The Antarctic Dinosaurs project aims to leverage the popularity and charisma of dinosaurs to inspire a new generation of polar scientists and a more STEM (Science, Technology, Engineering, Mathematics)-literate citizenry. The project, centered on a giant screen film that will reach millions of theatrical viewers across the U.S., will convey polar science knowledge through appealing, entertaining media experiences and informal learning programs. Taking advantage of the scope of research currently taking place in Antarctica, this project will incorporate new perspectives into a story featuring dinosaurs and journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and the profound changes the Antarctic continent has endured. The goals of the project are to encourage young people to learn about Antarctica and its connection to the rest of the globe; to challenge stereotypes of what it means to participate in science; to build interest in STEM pursuits; and to enhance STEM identity.

This initiative, aimed particularly at middle school age youth (ages 11-14), will develop a giant screen film in 2D and 3D formats; a 3-episode television series; an "educational toolkit" of flexible, multi-media resources and experiences for informal use; a "Field Camp" Antarctic science intervention for middle school students (including girls and minorities); fictional content and presentations by author G. Neri dealing with Antarctic science produced for young people of color (including non-readers and at-risk youth who typically lack access to science and nature); and presentations by scientists featured in the film. The film will be produced as a companion experience for the synonymous Antarctic Dinosaurs museum exhibition (developed by the Field Museum, Chicago, in partnership with the Natural History Museum of Los Angeles County, Discovery Place, Charlotte, NC, and the Natural History Museum of Utah). Project partner The Franklin Institute will undertake a knowledge-building study to examine the learning outcomes resulting from exposure to the film with and without additional experiences provided by the Antarctic Dinosaurs exhibition and film-related educational outreach. The study will assess the strategies employed by practitioners to make connections between film and other exhibits, programs, and resources to improve understanding of the ways film content may complement and inspire learning within the framework of the science center ecosystem. The project's summative evaluation will address the process of collaboration and the learning impacts of the film and outreach, and provide best practices and new models for content producers and STEM educators. Project partners include film producers Giant Screen Films and Dave Clark Inc.; television producer Natural History New Zealand (NHNZ); Discovery Place (Charlotte, NC); The Franklin Institute; The Field Museum; The Natural History Museum of Utah (The University of Utah); author G. Neri; and a team of scientists and diversity advisers. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Antarctic section of the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood
resource research Public Programs
This article provides an overview of the Chief Science Officer program launched in 2015 by Arizona SciTech. Students vote for one of their peers to become a STEM advocate in their school. These Chief Science Officers select and promote STEM programming, connect with STEM organizations to bring STEM programming to their communities, or participate in local and state conversations on education and the workforce.
DATE:
TEAM MEMBERS: Jeremy Babendure Nagib Balfakih Susan Farretta Becky Hughes