Skip to main content

Community Repository Search Results

resource project Media and Technology
The Harvard Museums of Science and Culture will improve the ability of middle school teachers to use museum-based digital resources to support classroom instruction aligned with state and national science standards. Working with advisory teachers from five collaborating school districts, the museum will co-create classroom activities, based on digital resources from its collections, along with associated teacher professional development programs at three sites across urban and rural Massachusetts. The project will provide schools with access to classroom-ready resources that successfully support student learning. Teachers will learn how to use these materials, integrate them into their teaching, and enhance their skills to teach science content and practice. External evaluators will assess the project's effectiveness by measuring teacher implementation of the digital resources in the classroom, requests for information and assistance, and changes in teachers' confidence and comfort levels.
DATE: -
TEAM MEMBERS: Wendy Derjue-Holzer
resource evaluation Media and Technology
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater program and hands-on group activities. Multimedia Research, an independent evaluation firm, implemented a summative evaluation with low income, inner-city
DATE:
TEAM MEMBERS: Barbara Flagg
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at DePaul University. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Bill Penuel Tamara Sumner Nichole Pinkard
resource evaluation Media and Technology
In 2009, NSF funded development of Model My Watershed (MMW), a place-based, watershed cyber-modeling tool for middle and high school students and teachers. The online learning tool encourages students to investigate their neighborhoods and use scientific reasoning with real-world decision-making models similar to those used by STEM professionals to simulate systems and analyze processes. The project also sought to increase youth interest in possible opportunities in the STEM workforce and to aid in development of knowledge about earth science. This summary represents the first of a two-phase
DATE:
TEAM MEMBERS: Stroud Water Research Center John Fraser
resource research Media and Technology
What are students' mental models of the environment? In what ways, if any, do students' mental models vary by grade level or community setting? These two questions guided the research reported in this article. The Environments Task was administered to students from 25 different teacher-classrooms. The student responses were first inductively analyzed in order to identify students' mental models of the environment. The second phase of analysis involved the statistical testing of the identified mental models. From this analysis four mental models emerged: Model 1, the environment as a place
DATE:
TEAM MEMBERS: Daniel Shepardson Bryan Wee Michelle Priddy Jon Harbor
resource research Media and Technology
Science education researchers increasingly focus on the use of controversial science topics in the classroom to prepare students to make personal and societal decisions about these issues. However, researchers infrequently investigate the diverse ways in which students learn about controversial science topics outside the classroom, and how these interact with school learning. Therefore, this study uses qualitative, ethnographic research methods to investigate how 20 high school students attending a New York City public school learn about a particular controversial science topic-HIV/AIDS-in
DATE:
TEAM MEMBERS: Jennie Brotman Felicia Moore Mensah Nancy Lesko
resource project Media and Technology
As an outreach program, Barb Finkleman of All American Cablevision of Columbus, OH arranged a field trip to the public access video studio in the basement of the Main Branch of the Columbus Public Library system in 1980 so that inner city children could see and meet music video producer Marshall Barnes and view his creation, The Last Communication through an arrangement with Cowtown Records and Videoworks and the Columbus Public Library. The children, all elementary school aged, listened to Marshall explain his work and the role of a video producer, as well as how a studio works. They then viewed The Last Communication, a 30 minute video animated space rock symphony that had been described by some as "Saturday morning cartoons for children on Mars". Of special note, the children were mesmerized and at one point, spontaneously began singing with the music in one section, prompting surprise from both Marshall and Barb but confirming Marshall's suspicions that children will respond to abstract stimulus within certain psychological parameters that can be exhibited aurally and visually. It was the beginning of the concrete data that years later would result in his science of technocogninetics.
DATE:
TEAM MEMBERS: Marshall Barnes All American Cablevision Cowtown Records and Videoworks Columbus Public Library
resource evaluation Media and Technology
In 2008, the WGBH Educational Foundation, along with the Association of Computing Machinery, was awarded a grant from the National Science Foundation, Directorate for Computer and Information Science and Engineering, under the Broadening Participation in Computing Program (NSF 0753686). The purpose of the grant was to develop a major new initiative to reshape the image of computing among college-bound high school students. Based on its market research results, WGBH developed a website and other resources that were intended for use by teachers, parents and students. Concord Evaluation Group
DATE:
TEAM MEMBERS: Christine Paulsen WGBH
resource project Media and Technology
This two-year project is communicating the results of scientific discoveries produced by an on-going LTER (Long-term Ecological Research) project devoted to understanding the Everglades ecosystem. Specifically, Dr. Heithaus is capitalizing on the discoveries funded through 0620409 (Coastal Oligotrophic Ecosystems Research) about the role of large-bodied, top predators in the Everglades, including bull sharks (Carcharhinus leucas) and American alligators (Alligator mississippiensis). The STEM content of this project is biology, in particular ecology, the environment, and conservation. These results are being communicated via: (1) multimedia exhibit presentations at multiple museums and nature centers in southern Florida, primarily the Museum of Discovery and Science (MODS), located in Ft. Lauderdale near the Everglades and (2) online dissemination of mini-documentaries and other educational components at social media websites and the LTER web site. The target audience for the museum exhibit components includes learners from diverse cultural backgrounds, such as urban family groups reflecting the demographics of southern Florida. This project will also develop a documentary about Everglades ecology that is planned for dissemination on a cable TV channel devoted to natural history. In order to link with formal education, related educational deliverables are being produced for use in science classroom settings (grades 4 through 12) that are aligned with the state science standards and benchmarks. Formative assessment conducted by museum staff and university students will evaluate learning outcomes as they relate to STEM content learning goals. After the two-year funding period, the science learning opportunities produced from the current Communicating Research to Public Audiences (CRPA) project will be sustained as the exhibit travels to other venues and as web deliverables are accessed on-line.
DATE: -
TEAM MEMBERS: Michael Heithaus
resource project Media and Technology
The Carnegie Science Center (of Carnegie Institute) and Carnegie Mellon University (Center for Light Microscope Imaging and Biotechnology, a National Science Foundation Science and Technology Center, and The Studio for Creative Inquiry) have initiated a collaborative project that portends to change in a dramatic fashion the planetarium theater as a tool for informal science education. After several months of preliminary discussions and, now, the beginning of work, the creative team has been assembled that is defining the vision and executing the program of this exciting project. The vision being formulated is the transformation of The Henry Buhl Jr. Planetarium into a new visualization environment to achieve an interdisciplinary and interactive group learning experience. We call this new concept the "Group Immersive Visualization Environment (GIVE). GIVE will accomplish much of the impact of virtual reality by combining "three-dimensional" images generated by Evans & Sutherland's Digistar Projection System with real and animated, high-resolution video computer images and multimedia and by providing direct audience-control of program direction via The Henry Buhl Jr. Planetarium's elaborate 156-seat, electronic response system. While we anticipate the eventual production of a series of programs in a variety of subject fields, the first to utilize GIVE will be "Journey to the Center of the Cell," a 35-minute presentation. The treatment will convey an experience of self-discovery and natural wonder as audiences transport themselves through striking visualizations of the living cell. Production and evaluation of "Journey to the Center of the Cell" and the development of the Group Immersive Visualization Environment will occur under the auspices of staff of The Henry Buhl Jr. Planetarium, key personnel from Carnegie Mellon University, evaluator Harris H. Shettel, and an Advisory Panel consisting of key planetarium and eductional professionals. Program production packages, incorporating compatible components of "Journey to the Center of the Cell," will be produced, marketed and distributed to public and school planetariums; and a Teacher Resource Kit containing supplementary educational materials in the form of video tapes, CD-ROMS and computer disks wil extend the program's reach into the classroom. Special relationships and viewing times will be offered at The Henry Buhl Jr. Planetarium targeting Pittsburgh inner city schools and regional districts containing large percentages of underserved and minority students.
DATE: -
TEAM MEMBERS: Paul Oles D. Lansing Taylor Martin Ratcliffe
resource project Media and Technology
The scientific community is challenged by the need to reach out to students who have traditionally not been attracted to engineering and the sciences. This project would provide a link between the University of Michigan and the teachers and students of secondary education in the State of Michigan with an initial emphasis on southeast Michigan, through the creation of a range of computer services which will provide interactive access to current weather and climate change information. Taking advantage of a unique computer network capacity within the State of Michigan named MichNet which provides local phone ports in virtually every major city in the state, and the resources available to the university community via the University Corporation for Atmospheric Research (UCAR) UNIDATA program, this project would provide secondary schools with access to a state-of-the-art interactive weather information system. The real-time data available via the system, supplemented by interactive computer modules designed in collaboration with earth science teachers, will provide animated background information on a range of climate and weather related topics. While the principal objective of this project will be to provide educationally stimulating interactive computer systems and electronic weather and climate modules for application in inner city Detroit and its environs, the unique nature of the available computer networking will allow virtually every school system in the state to have access. Subsequently successful completion of this project could eventually make the same systems available to other cities and states.
DATE: -
TEAM MEMBERS: Perry Samson