Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Michelle Kortenaar Erin Jant Karen Via Carrie Jubran
resource research Exhibitions
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Andres Bustamante June Ahn Kathy Hirsh-Pasek
resource project Public Programs
The Children’s Museum will collaborate with six Hartford Public Library branches, three Hartford Family Centers, and the Connecticut Children’s Medical Center to provide  hands-on Science, Technology, Engineering, Arts, and Mathematics  (STEAM) - based programs to over 1,000  local 3 to 14-year old children and their care givers. Program design and development will include planning for  field trips to the museum.  All participants will be given age-specific, supplemental STEAM materials to continue their learning activities at home, and families can attend more than one week of library programs, or more than three Saturdays of family center programs.  The goal will be to help urban Hartford youths find new pathways toward responsible citizenry and fiscal stability.
DATE: -
TEAM MEMBERS: Beth Weller
resource project Media and Technology
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a series of mobile apps to guide families through sequenced sets of videos and hands-on activities. To support families at home it would also develop a new library model to build librarians' computational thinking content knowledge and self-efficacy so they can support parents' efforts with their children. Computational thinking is a an increasingly critical skill for learning and success in the workforce. It includes the ability to identify problems, brainstorm and generate solutions and processes that can be communicated and followed by computers or humans. There are few projects that introduce computational thinking to young children. Very little research has been done on the ways that parents can facilitate children's engagement in CT skills. And developing a model that trains and supports librarians to become virtual coaches of parents as they engage with their children in CT, will leverage and build the expertise of librarians. The project's target audience includes parents and children living in rural areas where access to CT learning may be very limited. Project partners include the EDC, a major research organization, the American Library Association, and BUILD, a national association that promotes collaborations across library, kindergarten readiness, and public media programming.

The formative research study asks: 1) What supports do parents of preschoolers in rural communities need in order to effectively engage in CT with their children at home? and 2) How can libraries in rural communities support joint CT exploration in family homes? The summative research study asks: 3) how can an intervention that combines media resources, mobile technology, and library supports foster sustained joint parent/child engagement and positive attitudes around CT? Researchers will develop a parent survey, adapting several scales from previously developed instruments that ask parents to report on children's use of CT-related vocabulary and CT-related attitudes and dispositions. Survey scales will assess librarians' attitudes towards CT, as well as their self-efficacy in supporting parents in CT in a virtual environment. During the formative study, EDC will pilot-test survey scales with 30 parents and 6 librarians in rural MS and KY. Analyses will be primarily qualitative and will be geared toward producing rapid feedback for the development team. Quantitative analyses will be used on parent app use, using both time query and back-end data, exploring factors associated with time spent using apps. The summative study will evaluate how the new media resources and mobile technology, in combination with the library virtual implementation model, support families' joint engagement with CT, and positive attitudes around CT. The researchers will recruit 125 low-income families with 4- to 5-year-old children in rural MS and KY to participate in the study. They will randomly assign families within each library to the full intervention condition, including media resources, mobile technology, and library support delivered through the virtual implementation model, or the media and mobile-technology-only condition. This design will allow researchers to understand more fully the additional benefit of library support for rural families' sustained engagement, and conversely, see the comparative impact of a media- and mobile-technology only intervention, given that some families might not be able to access virtual or physical library support.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne Jessica Andrews Janna Kook
resource project Exhibitions
A long history of research suggests that early informal STEM learning experiences such as block play, puzzles, visiting zoos and science museums can build a strong foundation for STEM learning and which leads to later STEM success. Yet, children from low-income and historically underserved communities have less access to these opportunities due to scarce resources and barriers to access such as transportation and cost. To address these challenges, this project will endeavor to infuse public urban spaces such as local parks, bus-stops, and grocery stores with playful and engaging informal STEM learning opportunities in low-income Latinx neighborhoods as a strategy for understanding how public spaces, when co-designed with community partners and informed by the science of learning, can foster rich, informal STEM learning experiences for young children in neighborhood places where families naturally spend time. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

Using techniques of Community-Based, Participatory Design Research, researchers will collaborate closely with community families and partners in Santa Ana, California to achieve three aims: 1) Co-design a series of outdoor Playful Learning Landscape (PLL) exhibit installations with community partners that reflect the goals, values, and cultural capital of the Latino community. 2) Explore how caregivers and their children experience PLL exhibit installations and examine the development and changes in: a) caregiver-child STEM conversation and interactions, and b) caregiver attitudes about the importance of informal STEM learning and their beliefs about their role in facilitating STEM learning. 3) Leverage existing data from county partners to examine the potential effects of having multiple PLL installations within a specific neighborhood on promoting STEM learning and development across an array of cognitive and socio-emotional outcomes in early-childhood. This project will advance current knowledge on informal STEM learning by demonstrating new ways to understand the cultural assets that Latinx families bring to learning contexts, showing how the unique assets and needs of a local community can be incorporated into public infrastructure, and documenting the STEM-related learning experiences and interactions that occur in these settings. Due to a partnership with the Orange County Children and Families Commission, which collects data on child learning and development on every child in the county, researchers will examine the longitudinal impacts of a cluster of playful STEM-learning exhibit installations in a single neighborhood on children's developmental outcomes compared to matched neighborhoods without access to these installations. By leveraging everyday routines to promote playful STEM learning and caregiver-child STEM-related interactions, this project will: 1) empower caregivers to build a STEM learning foundation for children during early childhood; and 2) serve as a model for how cities can be re-designed to enhance ubiquitous STEM learning across public spaces, with the cultural capital of local families and children at the center of urban design and revitalization.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Andres Bustamante Kathy Hirsh-Pasek June Ahn
resource project Informal/Formal Connections
Parents and adult caregivers play a significant role in young children's understanding of (and participation in) science, technology, engineering, and mathematics (STEM). Research suggests that early engagement with STEM can have a profound impact on children's use of STEM process skills such as exploration, observation, and problem-solving, as well as future academic success. An immediate yet ongoing challenge facing informal STEM learning providers is to understand how limited resources can be used to support effective STEM learning opportunities and experiences for all children and families. Through a collaboration between researchers, Head Start, two science centers (one rural, one urban), and educators, this project aims to foster STEM access and engagement with specific attention to young children and their caregivers. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Pilot and Feasibility study will apply an experimental, mixed-methods design to examine parent/caregiver and child (ages 4-5) interactions before, during, and after informal STEM experiences to identify which factors influence children's transfer of learning STEM process skills across multiple informal contexts. Research results will lay the foundation for a future longitudinal study. The project team will ask: (1) What types of parent/caregiver-child engagement at the science center are most predictive of children's application of STEM process skills in subsequent problem-solving tasks and school readiness? (2) How do variations in parent/caregiver-child conversational strategies during the science center visit influence children's memory and learning? and (3) How can informal educators best support Head Start family engagement and children's emerging STEM knowledge? This study will collect data on 240, 4-5-year-old children, with their caregivers, in two different science centers that serve a largely rural and largely urban population. Data sources will include video/audio of caregiver-child interactions at the science centers and at home, as well as children's recall, engagement with a problem-solving task, and school readiness scores. Coding and analysis of the tasks during and after the science center visit will detail mechanisms underlying children's memory, learning, and application of STEM process skills that transfer to the problem-solving task. The project will be implemented by a research-practice partnership, leveraging the expertise of project partners and communities to ensure the use of culturally responsive research practices. This research has the potential to strategically impact how science centers and Head Start grantees work together on Family Engagement programming to achieve equitable STEM learning opportunities, broadening participation for low-income young children and their families.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michelle Kortenaar Jennifer Schwade Erin Jant Stacy Prinzing
resource evaluation Media and Technology
Ruff Family Science is a project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. Building on the success of the PBS series FETCH! with Ruff Ruffman, the project leverages FETCH’s funny and charismatic animated host, along with its proven approach to teaching science, to inspire educationally disadvantaged families to explore science together. The project is utilizing a research and design process to create resources that meet the needs of families
DATE:
TEAM MEMBERS: Mary Haggerty Heather Lavigne Jessica Andrews
resource project Exhibitions
Mathematics plays a significant role in understanding and participating in science, technology, and engineering (STEM). Research shows that early mathematics experiences in everyday life are critical to the development of children's mathematical knowledge. This project will explore an innovative approach to fostering parent-child math interactions and conversations related to mathematical ideas. The approach will use community-based, exhibit installations called Mathscapes. These are artistic, culturally relevant, easily accessible, physical installations designed to encourage adults and children (ages 3 to 7) to use their immediate environment to playfully explore key early math concepts. The project also addresses a need for research about the cultural experiences and resources that marginalized children and families bring to mathematical conversations. Understanding parent-child interactions about mathematics community settings could result in new knowledge about early math learning among low income children and parents. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This exploratory study will design and investigate an innovative approach to encouraging math talk and math-related interactions between parents and children (ages 3-7) through the creation of MathScapes. These are temporary physical installations designed to use the immediate environment to playfully explore mathematical concepts. This study will be conducted in two Boston neighborhoods that are populated by low-income, non-dominant minority and immigrant families. Adopting a case study approach, the project will use observational methods, discourse analysis of parent/child talk, and interviews to study the interactions of 200 families at two neighborhood Mathscape installations. LENA devices will be used to capture parent/child talk at the Mathscapes while researchers use observational methods to document participant interactions, talk, and gestures. Data sources will include audio recordings of family talk, field notes of family interactions at Mathscape installations, surveys, and interviews. A qualitative approach will be used to produce research findings at multiple levels. The focus of the analysis will be to understand if this approach enhances the quality and quantity of math talk between parents and children. The project will be carried out by a research-practice-community partnership in Boston, Massachusetts that includes community mathematics educators, education researchers, and participating children and families. The design of community installations could promote engagement with math through adult/child conversations in culturally-relevant contexts situated in the local environment. By addressing the cultural experiences and resources of young people, the project could greatly enhance our understanding of how to leverage the resources that children and families bring to engaging with mathematics.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Omowale Moses Danny Martin Catherine O'Connor Nermeen Darshoush
resource research Public Programs
In this case study, we highlight the work of the Bay Area STEM Ecosystem, which aims to increase equity and access to STEM learning opportunities in underserved communities. First, we lay out the problems they are trying to solve and give a high level overview of the Bay Area STEM Ecosystem’s approach to addressing them. Then, based on field observations and interviews, we highlight both the successes and some missed opportunities from the first collaborative program of this Ecosystem. Both the successes of The Bay Area STEM Ecosystem--as well as the partners’ willingness to share and examine
DATE:
resource project Public Programs
Our Sky is a series of Out-of-School Time and museum educational programs that inspire an appreciation and understanding of Earth and Space Science (ESS) in a diverse population of children ages 3-10 and their parents, caregivers and educators. All resources are developed through a partnership between Boston Children’s Museum and Smithsonian Astrophysical Observatory in Boston and Cambridge, Massachusetts. The vision for Our Sky is that children ages 3-10 and their adult caregivers will gain an appreciation for celestial objects and phenomena as a foundation for understanding of Earth and Space Science. All resources and activities will be designed to realize this vision, and to:

Serve a diverse range of audiences, with an emphasis on urban and low-income children and families;
Increase appreciation among diverse adults and children of the sky as an accessible science learning resource;
Share NASA resources with, and help develop foundational STEM skills in children;
Encourage adults to engage in and guide ESS learning experiences with children;
Inspire practical application of STEM skills by children and adults as they explore celestial objects together; and
Expand the capacity of museum staff and afterschool educators to engage families in learning STEM skills through ESS exploration.
Our Sky activities will result in:

A series of museum-based programs that incorporate NASA resources and ESS activities across a range of content areas; and
A series of new ESS-focused activities for the award-winning “Beyond the Chalkboard” afterschool curriculum that include NASA resources and will reach hundreds of thousands of children around the world.
DATE: -
TEAM MEMBERS: Leslie Swartz Mary Dussault Tim Porter
resource project Professional Development, Conferences, and Networks
The Vermont Center for the Book is developing "Mother Goose Cares about Math and Science," an integrated curriculum of science process skills and standards-based mathematics concepts for preschool children. A college credit course will be developed for childcare providers based on this curriculum. The course increases science and math literacy and the ability to incorporate NCTM standards, and science process skills, into daily interactions with children. Participants are also provided with the tools to communicate the importance of these concepts to parents. The course will be delivered to 600 childcare workers in Vermont and inner-city Philadelphia over a three-year period. Recruitment will include providers in center-, home- and school-based settings in both urban and rural communities. Participants will be provided with books, Curriculum Guides, tools and manipulatives needed to implement the course pedagogy. Materials to be developed include a seven-segment training, which will be used to disseminate the project nationally. Participants will receive a comprehensive training package that can be used to train their peers.
DATE: -
TEAM MEMBERS: Sally Anderson Gregory DeFrancis
resource project Public Programs
Michigan Technological University will collaborate with David Heil and Associates to implement the Family Engineering Program, working in conjunction with student chapters of engineering societies such as the American Society for Engineering Education (ASEE), the Society of Hispanic Professionals (SHP) and a host of youth and community organizations. The Family Engineering Program is designed to increase technological literacy by introducing children ages 5-12 and their parents/caregivers to the field of engineering using the principles of design. The project will reach socio-economically diverse audiences in the upper peninsula of Michigan including Native American, Hispanic, Asian, and African American families. The secondary audience includes university STEM majors, informal science educators, and STEM professionals that are trained to deliver the program to families. A well-researched five step engineering design process utilized in the school-based Engineering is Elementary curriculum will be incorporated into mini design challenges and activities based in a variety of fields such as agricultural, chemical, environmental, and biomedical engineering. Deliverables include the Family Engineering event model, Family Engineering Activity Guide, Family Engineering Nights, project website, and facilitator training workshops. The activity guide will be pilot tested, field tested, and disseminated for use in urban, suburban, and rural settings. Strategic impact will result from the development of content-rich engineering activities for families and the dissemination of a project model that incorporates the expertise of engineering and educational professionals at multiple levels of implementation. It is anticipated that 300 facilitators and 7,000-10,000 parents and children will be directly impacted by this effort, while facilitator training may result in more than 27,000 program participants.
DATE: -
TEAM MEMBERS: Neil Hutzler Eric Iversen Christine Cunningham Joan Chadde David Heil