Skip to main content

Community Repository Search Results

resource project Informal/Formal Connections
This project is funded by the EHR Core Research (ECR) program, which supports work that advances fundamental research on STEM learning and learning environments, broadening participation in STEM, and STEM workforce development. It responds to continuing concerns about racial and social inequities in STEM fields that begin to emerge in the early childhood years. The overarching goal of the project is to identify cultural strengths that support early science learning opportunities among Spanish-speaking children from immigrant Latin American communities, a population that is traditionally underrepresented in STEM educational and career pursuits. Building on a growing interest in the ways stories can promote early engagement in and understanding of science, this project will investigate the role of oral and written stories as culturally relevant and potentially powerful tools for making scientific ideas and inquiry practices meaningful and accessible for young Latinx children. Findings will reveal ways that family storytelling practices can provide accessible entry points for Latinx children's early science learning, and recommend methods that parents and educators can use to foster learning about scientific practices that can, in turn, increase interest and participation in science education and fields.

The project will advance knowledge on the socio-cultural and familial experience of Latinx children that can contribute to their early science learning and skills. The project team will examine the oral story and reading practices of 330 Latinx families with 3- to 5-year-old children recruited from three geographic locations in the United States: New York, Chicago, and San Jose. Combining interviews and observations, the project team will investigate: (1) how conversations about science and nature occur in Latinx children's daily lives, and (2) whether and to what extent narrative and expository books, family personal narratives, and adivinanzas (riddles) engender family conversations about scientific ideas and science practices. Across- and within-site comparisons will allow the project team to consider the immediate ecology and broader factors that shape Latinx families’ science-related views and practices. Although developmental science has long acknowledged that early learning is culturally situated, most research on early STEM is still informed by mainstream experiences that largely exclude the lived experiences of children from groups underrepresented in STEM, especially those who speak languages other than English. The proposed work will advance understanding of stories as cultural resources to support early science engagement and learning among Latinx children and inform the development of high quality, equitable informal and formal science educational opportunities for young children.
DATE: -
TEAM MEMBERS: Gigliana Melzi Catherine Haden Maureen Callanan
resource project Public Programs
Environmental Protectors is a four-year project based at the University of California at Berkeley’s Lawrence Hall of Science. The project is designed to explore the educational and developmental impact of an informal science education programming model that features Community and Citizen Science (CCS) activities for youth of color residing in urban communities. The project is grounded in hypothesis that CCS-focused experiences result in learning outcomes that better position youth of color to more effectively engage in Science, Technology, Engineering, and Mathematics (STEM) related educational, occupational, and civic activities. Each year, in three economically challenged urban communities located throughout the country, youth of color between the ages of 14 and 18 will participate in month-long summer or semester-long afterschool programs. These programs will feature CCS-related activities that include collection, analysis, interpretation and presentation of data that addresses local, pressing environmental quality concerns, such as soil lead contamination and air particulate matter pollution. The project will use a mix of qualitative and quantitative data collection and analysis to assess the impact of youth engagement in these CCS activities. Overall, through its implementation the project aims to generate information useful in nationwide efforts designed to identify effective strategies and approaches that contribute to increasing STEM understanding and interest among youth of color.

Project research is guided by the following questions: A) What are ways to increase STEM engagement among those who have typically been underrepresented in Community and Citizen Science (CCS) research projects in particular and STEM in general? B) When youth are engaged in CCS, what outcomes are observed related to their science agency and science activism? What other unanticipated outcomes are observed related to benefits of participation and learning? C) How does science activism develop in youth participating in CCS?; and D) How do differences in program implementation impact youth outcomes. In particular, the project explores the manner in which particular CCS activities (e.g., project design, data analysis and interpretation, data presentation) impact youth “Science Agency,” defined as a combination of constructs that include Science Identity (i.e., sense of themselves as science thinkers), Science Value (i.e., awareness of the potential benefits of applying scientific practices to addressing critical community health and environmental issues) and Science Competency Beliefs (i.e., belief of themselves as competent science practitioners) and “Science Activism,” defined as a combination of perceived behavioral control and personal salience. Through its execution the project will refine a theory of learning that makes explicit connections between these constructs. Information derived from the execution of the project will contribute to deeper understanding of the potential for using of CCS projects as a key component of science education environments in urban areas and in general.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Kevin Cuff Mac Cannady Sarah Olsen
resource project Media and Technology
The Ice Worlds media project will inspire millions of children and adults to gain new knowledge about polar environments, the planet’s climate, and humanity’s place within Earth’s complex systems—supporting an informed, STEM literate citizenry. Featuring the NSF-funded THOR expedition to Thwaites glacier, along with contributions of many NSF-supported researchers worldwide, Ice Worlds will share the importance of investments in STEM with audiences in giant screen theaters, on television, online, and in other informal settings. Primary project deliverables include a giant screen film, a filmmaking workshop for Native American middle school students that will result in a documentary, a climate storytelling professional development program for informal educators, and a knowledge-building summative evaluation. The project’s largest target audience is middle school learners (ages 11-14); specific activities are designed for Native American youth and informal science practitioners. Innovative outreach will engage youth underserved in science inspiring a new generation of scientists and investigative thinkers. The project’s professional development programs will build the capacity of informal educators to engage communities and communicate science. The Ice Worlds project is a collaboration among media producers Giant Screen Films, Natural History New Zealand, PBS, and Academy Award nominated film directors (Yes/No Productions). Additional collaborators include Northwestern University, The American Indian Science and Engineering Society, the Native American Journalism Association, a group of museum and science center partners, and a team of advisors including scientific and Indigenous experts associated with the NSF-funded Study of Environmental Arctic Change initiative.

The goals of the project are: 1) to increase public understanding of the processes and consequences of environmental change in polar ecosystems, 2) to explore the effectiveness of the giant screen format to impart knowledge, inspire motivation and caring for nature, 3) to improve middle schoolers’ interest, confidence and engagement in STEM topics and pursuits—broadly and through a specific program for Native American youth, and 4) to build informal educators’ capacity to share stories of climate change in their communities. The main evaluation questions are 1) to what extent does the Ice World film affect learning, engagement, and motivation around STEM pursuits and environmental problem solving 2) what is the added value of companion media for youth’s giant screen learning over short and longer term, and 3) what are the impacts of the culturally based Native American youth workshops.

The evaluation work will involve a Native American youth advisory panel and a panel of science center practitioners in the giant screen film’s development and evaluation process. Formative evaluation of the film will involve recruiting youth from diverse backgrounds, including representation of Native youth, to see the film in the giant screen theater of a partner site. Post viewing surveys and group discussions will explore their experience of the film with respect to engagement, learning, evoking spatial presence, and motivational impact. A summative evaluation of the completed film will assess its immediate and longer term impacts. Statistical analyses will be conducted on all quantitative data generated from the evaluation, including a comparison of pre and post knowledge scores. An evaluation of the Tribal Youth Media program will include a significant period of formative evaluation and community engagement to align activities to the needs and interests of participating students. Culturally appropriate measures, qualitative methods and frameworks will be used to assess the learning impacts. Data will be analyzed to determine learning impacts of the workshop on youth participants as well as mentors and other stakeholder participants. Evaluation of the community climate storytelling professional development component will include lessons learned and recommendations for implementation.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood Patricia Loew
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Media and Technology
Early childhood is a critical time for developing foundational knowledge, skills, and interest in science, technology, engineering, and mathematics (STEM). For that reason, the Public Broadcasting Service (PBS) places a great priority on developing early childhood STEM content, especially through its television shows that are watched by over 60% of young children in the United States. Research suggests that adding in-the-moment interaction to television watching promotes learning and engagement. Toward this end, researchers from the University of California, Irvine and PBS KIDS have prototyped interactive versions of science shows that children view on internet-connected devices while they communicate with the main character powered by an AI conversational agent. Pilot studies show that when children watch these new interactive videos with the main character pausing periodically to ask probing questions about the learning goals of the episode and following up with appropriate responses, they are more engaged and learn more about science, with heightened benefits for children who speak languages other than English at home. Based on these early results, in this Innovations in Development project the research team will develop, test and produce publicly available conversational episodes for two PBS KIDS television shows, one focused on science and the other on computational thinking.

The project will iteratively study and develop six conversational videos with novel forms of support for children, including extended back-and-forth conversation that builds upon a child's responses, visual scaffolding that facilitates verbal communication, and bilingual language processing so that children can answer in English or Spanish. The conversational videos will be evaluated in both lab-based and home settings. The lab-based study will involve 600 children ages 3-7 in a predominantly low-income Latino community in Southern California, in which researchers compare children’s learning and engagement when watching the conversational videos with three other formats: (1) watching the non-interactive broadcast version of the video; (2) watching the video with pseudo-interaction, in which the main character asks questions and gives a generic response after a fixed amount of time but can’t understand what the child says; or (3) watching the broadcast version of the video with a human co-viewer who pauses the video and asks questions. The home-based study will involve 80 families assigned to watch either the non-interactive or interactive videos as many times as they want over a month at home. In both the lab-based and home studies, pre- and post-tests will be used to examine the impact of video watching on science and language learning, and log data will be used to assess children’s verbalization and engagement while watching. Following the home study, the six videos will be further refined and made available for free to the public through the PBS KIDS apps and website, which are visited by more than 13 million users a month. Beyond providing engaging science learning opportunities to children throughout the country, this study will yield important insights into the design, usability, feasibility, and effectiveness of incorporating conversational agents into children’s STEM-oriented video content, with implications for extending this innovation to other educational media such as e-books, games, apps, and toys.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Mark Warschauer Silvia Lovato Andres Bustamante Abby Jenkins Ying Xu
resource project Public Programs
This Innovations in Development project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Specifically, this project connects Native Hawaiian youth ages 12-17 and their family members to STEM by channeling their cultural relationship with ʻāina, the sustaining elements of the natural world including the land, sea, and air. This project seeks to: broaden participation of Native Hawaiian youth who have been historically underrepresented in STEM; actively uphold Native Hawaiian ways of knowing and traditional knowledge; articulate the science rooted in cultural wisdom; and bring STEM into the lives of participants as they connect to the ʻāina. In partnership with six ʻāina-based community organizations across Hawaiʻi, this project will develop, implement, and study ʻāina-centered environmental education activities that explore solutions to local environmental problems. For example, in one module youth and their families will explore of a section of a nearby stream; identify and discuss the native, non-native, and invasive species; remove invasive species from a small section of the stream and make observations leading to discussions of unintended consequences and systemic impacts; ultimately, learners will meet at additional local waterways to engage in similar explorations and discussions, transferring their knowledge to understanding the impacts of construction on local streams and coral reefs. To this effort, the community-based organizations bring their expertise in preserving Hawaiian culture and sustainable island lifestyle, including rural and urban systems such as farming and irrigation traditions and the restoration of cultural sites. University of Hawai’i faculty and staff bring expertise in Environmental Science, Biology, Hawaiian Studies and Problem-Based Learning Curriculum Development. This project further supports organizational learning and sharing among the six community-based organizations. Grounded in Hawaiian ʻAʻo, where learning and teaching are the same interaction, community-based organizations will create a Community of Practice that will co-learn Problem-Based Learning pedagogy; co-learn and engage in research and evaluation methods; and share experiential and traditional knowledge to co-develop the ʻāina-based environmental education activities.

This project is uniquely situated to study the impact of community-led culturally relevant pedagogy on Hawaiian learners’ interests and connections to environmental science, and to understand ʻāina-based learning through empirical research. Research methods draw on Community-Based Participatory Research and Indigenous Research Methods to develop a collaborative research design process incorporated into the project’s key components. Community members, researchers, and evaluators will work together to examine the following research questions: 1) How does environmental Problem-Based Learning situate within ʻāina-based informal contexts?; 2) What are the environmental education learning impacts of ʻāina-based activities on youth and family participants?; and 3) How does the ʻāina-centered Problem-Based Learning approach to informal STEM education support STEM knowledge, interest and awareness? The evaluation will employ a mixed-methods participatory design to explore program efficacy, fidelity, and implementation more broadly across community-based sites, as well as program sustainability within each community-based site. Anticipated project outcomes are a 15-week organizational learning and sharing program with six ʻāina-based community organizations and 72 staff; the design and implementation of 18 activities to reach 360 youth and at least one of their family members; and the launch of an ʻāina-based STEM Community of Practice. The project’s research and development process for ʻāina-centered environmental education activities will be shared broadly and provide a useful example for other organizations locally and nationally working in informal settings with Native or Indigenous populations.
DATE: -
TEAM MEMBERS: Lui Hokoana Hokulani Holt-Padilla Jaymee Nanasi Davis
resource project Public Programs
The call for more science, technology, engineering, and mathematics (STEM) education taking place in informal settings has the potential to shape future generations, drive new innovations and expand opportunities. Yet, its power remains to be fully realized in many communities of color. However, research has shown that using creative embodied activities to explore science phenomena is a promising approach to supporting understanding and engagement, particularly for youth who have experienced marginalization. Prior pilot work by the principal investigator found that authentic inquiries into science through embodied learning approaches can provide rich opportunities for sense-making through kinesthetic experience, embodied imagining, and the representation of physics concepts for Black and Latinx teens when learning approaches focused on dance and dance-making. This Research in Service to Practice project builds on prior work to better understand the unique opportunities for learning, engagement, and identity development for these youth when physics is explored in the context of the Embodied Physics Learning Lab Model. The model is conceptualized as a set of components that (1) allow youth to experience and utilize their intersectional identities; (2) impact engagement with physics ideas, concepts and phenomena; and (3) lead to the development of physics knowledge and other skills. The project aims to contribute to more expansive definitions of physics and physics learning in informal spaces. While the study focuses primarily on Black and Latinx youth, the methods and discoveries have the potential to impact the teaching of physics for a much broader audience including middle- and high-school children, adults who may have been turned off to physics at an earlier age, and undergraduate physical science majors who are struggling with difficult concepts. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The research is grounded in sociocultural perspectives on learning and identity, embodied interaction and enactive cognition, and responsive design. The design is also informed by the notion of “ArtScience” which highlights commonalities between the thinking and making practices used by artists and by scientists and builds on the theoretical philosophy that all things can be understood through art or through science but integrating the two lenses allows for more complete understandings. Research will investigate the relationship between embodied learning approaches, design principles, and structures of the Embodied Physics Learning Lab model using the lenses of physics, dance, and integrated ArtScience to better understand the model. The project employs design-based research to address two overarching research questions: (1) What unique opportunities for learning, engagement, and identity development for Black and Latinx youth occur when physics is explored in the context of the Embodied Physics Learning Lab Model? and (2) How do variations in site demographics and site implementation influence the impact and scalability of the Learning Lab model? Further, the inquiry will consider (a) how youth experience and utilize their intersectional various identities in the context of the activities, structures, and essential elements of the embodied physics learning lab; (b) how youth's level of physics engagement changes depending on which embodied learning approaches and essential element structures are used; (c) the physics knowledge and other skills youth attain through the set of activities; and (d) how, if at all, the embodied learning approaches engage youth in thinking about their own agency as STEM doers. An interdisciplinary team of researchers, choreographers, and youth along with community organizations will co-design and implement project activities across four sites. Approximately 200 high school youth will be engaged; 24 will have the role of Teen Thought Partner. Through three iterative design cycles of implementation, the project will refine the model to investigate which elements most affect successful implementation and to identify the conditions necessary for scale-up. Data will be collected in the form of video, field notes, pre- and post- interviews, pre- and post- surveys, and artifacts created by the youth. Analyses will include a combination of interaction analysis, descriptive data analysis, and movement analysis. In addition to the research findings and explication of the affordances and constraints of the model, the project will also create a curricular resource, including narrative text and video demonstrations of physics concepts led by the teen thought partners, video case training modules, and assessment tools.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Dionne Champion
resource project Media and Technology
Cyberchase: Mobile Adventures in STEM is designed to advance the STEM learning of children ages 6-8 and engage low-income families in informal STEM interactions. Based on a successful NSF-funded pilot, the project combines the appeal of the PBS KIDS series Cyberchase and the potential of mobile texting to deliver informal learning. WNET and Education Development Center will produce: three Cyberchase videos that blend math and environmental content; a bilingual family engagement campaign in 15 communities across the U.S. that combines this media with weekly text-based engagement; and research into use and impact of the model among low-income Latinx families. Mobile Adventures addresses the need to better engage underserved families in informal science practices that are foundational for future STEM learning. While the materials target low-income communities broadly, research will focus on low-income Latinx families with children ages 6-8, an age group overlooked in previous research on educational uses of texting. A needs assessment and formative testing will ensure that the project design meets the needs and interests of diverse Latinx and other families.

The goal of Mobile Adventures is to build knowledge about how innovative, culturally responsive tools can help Latinx and low-income families engage in fun STEM learning at home. A three-tiered research study will address the question: how and to what extent does a mobile text-and-media approach to delivering informal STEM learning materials foster joint media engagement between children and parents, building new repertoires for learning together? The study will combine analysis of observation in homes and community settings, backend data, and pre/post surveys. Research will deepen understanding of effective family engagement models that make media a central component, the potential of text messaging as a stimulus to parent/child STEM learning, and maximal design of media and community engagement to serve low-income Latinx families. Findings will be disseminated through national conferences and journals. The Cyberchase videos, distributed free on broadcast and digital platforms, will build the STEM literacy of millions of diverse children, while the family engagement campaign will involve a projected 3,750 families in 15 locations. Evaluation will assess how well the project has met its goals.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Sandra Sheppard William Tally
resource project Media and Technology
Families play a vital role in supporting children’s informal science learning. Yet multiple studies have shown that Latinx families, particularly in neighborhoods with a high poverty rate, face many barriers to accessing informal science experiences and environments. Telenovelas, a type of television serial drama watched by Spanish-speaking audiences around the world, may provide an entryway to reaching these families. Prior research has shown that telenovelas can be an effective means of changing adults’ behavior, with potential cascading impacts on children. Education Development Center, Literacy Partners, and Univision will use a culturally responsive approach to broaden participation of Latinx families in informal science learning using La Fuerza de Creer, a popular Spanish-language telenovela that reaches 7 million U.S. viewers. The five-episode telenovela series will model positive informal science interactions between caregivers and their children and provide positive role models of Latinx scientists. The project team will then use the telenovela as the foundation for a five-session workshop series for caregivers to further explore how to engage in these informal science learning opportunities with their children. The La Fuerza-STEM project will build on families’ strengths and interests and tap their power—la fuerza—to engage children in exploring science. This research will examine the relationship between the telenovela/workshops and caregivers’ practices and attitudes towards science. La Fuerza-STEM seeks to expand informal science learning using a culturally grounded strategy to engage an under-served population that is historically under-represented in STEM.

The project will use an iterative research and design process that is guided by the input of both parent and scientific advisory boards. Front-end formative research with approximately 30 Latinx caregivers from under-resourced communities will explore their informal science practices. These experiences will then inform script development for the telenovela. A pre-post comparison group study with 200 caregivers will investigate how caregivers’ attitudes toward science might change as a result of viewing the telenovela. The project will then build a 5-session workshop series around the telenovela and these research findings. Finally, 300 caregivers will participate in a randomized controlled trial to examine the efficacy of the La Fuerza-STEM workshops on changing caregivers’ informal science attitudes and practices. Throughout, the project will address the overarching research question, How can a culturally relevant telenovela be used to improve Latinx caregivers’ science self-efficacy, career awareness, and informal science practices? Project findings and products will be publicly disseminated through publications, conference presentations, and local partner organizations, with an eye toward open access and data sharing. The project will generate knowledge about the effectiveness of embedding informal science content in a culturally-grounded medium—the telenovela—in improving caregivers’ confidence and competence to engage in informal science learning experiences with their children. With an anticipated audience of 7 million, the potential impact of the telenovela on caregivers’ informal science attitudes and practices is enormous. By implementing workshops with local organizations, the project aims to be self-sustaining, building the capacity of community partners to provide families with services targeting informal science knowledge and skills long after the grant has ended.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Joy Kennedy Jessica Young Alexia Raynal Anthony Tassi
resource project Public Programs
Creating science education that can contribute to cultivating just, culturally thriving, and sustainable worlds is an important issue of our time. Indigenous peoples have persistently been under-represented in science reproducing inequalities in a myriad of ways from educational attainment, participation in and contributing to innovations in foundational knowledge, to effective policy making that upholds and respects Indigenous sovereignty. The development of models of science education that attend to intersections of knowledge and development, socio-scientific decision-making and civic leadership, and the complexities and contradictions of these realities, is imperative. This five-year Innovations in Development project broadens participation and strengthens infrastructure and capacity for Indigenous learners to meet, adapt to, and lead change in relation to the socio-ecological challenges of the 21st century. The project engages multi-sited community-based design studies to develop and research the impacts of Indigenous informal field-based science education with three Indigenous leadership communities from the Pacific Northwest and the Great Lakes. This project will have broader impacts through model development, building infrastructure to transform the capacity of informal field-based science education, and will produce cutting edge foundational knowledge about pressing 21st century issues with a particular focus on Indigenous communities. The project increases Indigenous participation in research through 1) engagement of Indigenous community members as research assistants, 2) training of Indigenous graduate fellows, and post-doctoral fellows, and 3) supporting the careers of more junior Indigenous scholars.

This research seeks to identify key design features of an Indigenous field (land/water) based model of science education and to understand how learners’ and educators’ reasoning, deliberation, decision-making, and leadership about complex socio-ecological systems and community change evolve in such learning environments. The project also examines key aspects of co-design and partnership with Tribal communities and how these methods of co-production of new science enable new capacities for systems transformation. This multi-layered project is organized through 3 panels of studies including: Panel 1) community-based design experiments to develop and refine a model of Indigenous informal science education; Panel 2) co-design and implementation of professional learning programs for Indigenous informal science education; and Panel 3) foundational studies in cognition and learning with respect to socio-ecological systems thinking and the impact on learning and instructional practices. Of particular importance in this research is the rigorous development and articulation of effective pedagogical practices and orientations. More broadly, findings will have clear implications for theories of cognitive development, deliberation and environmental decision making and especially those pertaining to how knowledge is shaped by culture and experience.

This project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Filiberto Barajas-Lopez Anna Lees Megan Bang Anna Lees Filiberto Barajas-Lopez
resource project Public Programs
The U.S. urgently needs the perspective and knowledge of females who are Latinx and African American in STEM fields. Providing early STEM interest pathways for these populations that are historically underrepresented in STEM fields is critical to creating gender equity in the STEM workforce. There are profound inequities in STEM fields for women of color that impact their interest and persistence in these fields. This Research in Service to Practice project will build important knowledge about early pathways for reducing these inequities by developing early interest in STEM. Gender stereotypes around who can do STEM are one of the sociocultural barriers that contributes to girls’ loss of interest in STEM. These stereotypes emerge early and steer young women away from STEM studies and pursuits. Exposing girls to role models is an effective strategy for challenging stereotypes of who belongs and succeeds in STEM. This project will explore how an afterschool program that combines narrative and storytelling approaches, STEM role models, and family supports, sparks elementary-age girls’ interest in STEM and fosters their STEM identity. The project targets K-5 students and families from underrepresented groups (e.g., Latinx and African American) living in poverty. The project will evaluate an inquiry-based, afterschool program that serves both elementary school girls and boys and explores if adding storytelling components to the out-of-school time (OST) learning will better support girls’ interest in STEM. The storytelling features include: 1) shared reading of books featuring females in STEM; 2) students’ own narratives that reminisce about their STEM experiences; and 3) video interviews of female parents and community members with STEM careers. A secondary aim of this project is to build capacity of schools and afterschool providers to deliver and sustain afterschool STEM enrichment experiences. Museum-based informal STEM experts will co-teach with afterschool providers to deliver the Children’s Museum Houston (CMH) curriculum called Afterschool Science, Technology, Engineering, Arts and Math (A’STEAM). Although A’STEAM has been implemented in over 100 sites and shows promise, to scale-up this and other promising afterschool programs, the team will evaluate how professional development resources and the co-facilitation approach can build afterschool educators' capacity to deliver the most promising approaches.

Researchers at the Children’s Learning Institute (CLI) at UTHealth will partner with Museum-based informal STEM educators at CMH, YES Prep, a high performing charter school serving >95% of underrepresented groups, and other afterschool providers serving mostly underrepresented groups experiencing poverty. Storytelling components that highlight females in STEM will be added to an existing afterschool program (A'STEAM Basic). This derivative program is called A’STEAM Stories. Both instantiations of the afterschool programs (Basic and Stories) include an afterschool educator component (ongoing professional development and coaching), a family component (e.g., home extension activities, in-person, and virtual family learning events), and two age-based groups (K-G2 and G3-G5). Further, the A’STEAM Stories professional development for educators includes training that challenges STEM gender stereotypes and explains how to make science interesting to girls. The 4-year project has four phases. In Phase 1, researchers, CMH, and afterschool educators will adapt the curriculum for scalability and the planned storytelling variation. During Phase 2, the research team will conduct an experimental study to evaluate program impacts on increasing STEM interest and identity and reducing STEM gender stereotypes. To this end, the project’s team will recruit 36 sites and 1200 children across Kindergarten through Grade 5. This experimental phase is designed to produce causal evidence and meet the highest standards for rigorous research. The researchers will randomly assign sites to one of three groups: control, A’STEAM Basic, or A’STEAM Stories. During Phase 3, researchers will follow-up with participating sites to understand if the inclusion of afterschool educators as co-facilitators of the program allowed for sustainability after Museum informal science educator support is withdrawn. In Phase 4, the team will disseminate the afterschool curriculum and conduct two training-of-trainers for local and national afterschool educators. This study uses quantitative and qualitative approaches. Data sources include educator and family surveys, focus groups, and interviews as well as observations of afterschool program instructional quality and analysis of parent-child discourse during a STEM task. Constructs assessed with children include STEM interest, STEM identity, and STEM gender stereotype endorsement as well as standardized measures of vocabulary, science, and math. Findings will increase understanding of how to optimize OST STEM experiences for elementary-age girls and how to strengthen STEM interest for all participants. Further, this project will advance our knowledge of the extent to which scaffolded, co-teaching approaches build capacity of afterschool providers to sustain inquiry-based STEM programs.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Tricia Zucker Gloria Yeomans-Maldonado Cheryl McCallum Lance Menster