Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
Data science is ever-present in modern life. The need to learn with and about data science is becoming increasingly important in a world where the quantity of data is constantly growing, where one’s own data are often being harvested and marketed, where data science career opportunities are rapidly increasing, and where understanding statistics, data sources, and data representation is integral to understanding STEM and the world around us. Museums have the opportunity to play a critical role in introducing the public to data science concepts in ways that center personal relevance, social connections and collaborative learning. However, data science and statistics are difficult concepts to distill and provide meaningful engagement with during the brief learning experiences typical to science museums. This Pilot and Feasibility study brings together data scientists, data science educators, and museum exhibit designers to consider these questions:


What are the important data science concepts for the public to explore and understand in museum exhibits?
How can museum exhibits be designed to support visitors with diverse backgrounds and experiences to engage with these data science concepts?
What principles can shape these designs to promote broadening participation in data science specifically and STEM more broadly?



This Pilot and Feasibility project combines multidisciplinary expert convening, feasibility testing, and early exploratory prototyping around the focal topic of data science exhibits. Project partners, TERC, the Museum of Science, Boston, and The Tech Interactive in San Jose will engage in an iterative process to develop a theoretical grounding and practical guidance for museum practitioners. The project will include two convenings, bringing together teams of experts from the fields of data science, data science education and museum exhibit design. Prior to the first convening, an initial literature summary and a survey of convening participants will be conducted, culminating in a preliminary list of big ideas about data science. Periodically, participants will have the opportunity to rank, annotate and expand this list, as a form of ongoing data collection. During the convenings, participants will explore the preliminary list, share related work from the three disciplines, engage with related data science activities in small groups, and work together to build consensus around promising data science topics and approaches for exhibits. Participant evaluation will allow for iterative improvement of the convenings and the capture of missed points or overlooked topics. After each convening, museum partners will create prototypes that respond to the convening conversations. Prototypes will be pilot tested (evaluated) with an intentionally recruited group of families that includes both frequent visitors and those who are less likely to visit the museum; diversity in terms of race, languages and dis/ability will be reflected in selection. Pilot data collection will consist of structured observations and interviews. Results from the first round of prototyping will be shared with convening participants as a way to modify the list of big ideas and to further interrogate the feasibility of communicating these ideas in an exhibit format. Results from the convenings and from both rounds of prototyping will be combined in a guiding document that will be shared on all three partner websites, and more broadly with the informal STEM learning field. The team will also host a workshop for practitioners interested in designing data science exhibits, and present at a conference focused on museum exhibits and their design.
DATE: -
TEAM MEMBERS: Andee Rubin
resource project Exhibitions
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

The Accessible Oceans study will design auditory displays that support learning and understanding of ocean data in informal learning environments like museums, science centers, and aquariums. Most data presentations in these spaces use visual display techniques such as graphs, charts, and computer-generated visualizations, resulting in inequitable access for learners with vision impairment or other print-related disabilities. While music, sound effects, and environmental sounds are sometimes used, these audio methods are inadequate for conveying quantitative information. The project will use sonification (turning data into sound) to convey meaningful aspects of ocean science data to increase access to ocean data and ocean literacy. The project will advance knowledge on the design of auditory displays for all learners, with and without disabilities, as well as advance the use of technology for STEM formal and informal education. The study will include 425 participants but will reach tens of thousands through the development of education materials, public reporting, and social media. The study will partner with the Smithsonian National Museum of Natural History, Woods Hole Oceanographic Institution Ocean Discovery Center, the Georgia Aquarium, the Eugene Science Center, the Atlanta Center for the Visually Impaired, and Perkins School for the Blind.

The project will leverage existing educational ocean datasets from the NSF-funded Ocean Observatories Initiative to produce and evaluate the feasibility of using integrated auditory displays to communicate tiered learning objectives of oceanographic principles. Integrated auditory displays will each be comprised of a data sonification and a context-setting audio introduction that will help to make sure all users start with the same basic information about the phenomenon. The displays will be developed through a user-centered design process that will engage ocean science experts, visually impaired students and adults (and their teachers), and design-oriented undergraduate and graduate students. The project will support advocacy skills for inclusive design and will provide valuable training opportunities for graduate and undergraduate students in human-centered design and accessibility. The project will have foundational utility in auditory display, STEM education, human-computer interaction, and other disciplines, contributing new strategies for representing quantitative information that can be applied across STEM disciplines that use similar visual data displays. The project will generate publicly accessible resources to advance studies of inclusive approaches on motivating learners with and without disabilities to learn more about and consider careers in STEM.

This Pilots and Feasibility Studies project is supported by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Amy Bower Carrie Bruce Jon Bellona
resource project Exhibitions
Informal STEM learning environments, programs, and policies can be designed to support and promote neurodiversity through inclusive practices. This project will explore the benefits of informal STEM learning for K-12 neurodiverse learners through a systematic review and meta-analysis of extant literature and research grounded in the theory of social model of ability. This framework is an asset-based approach and aims to promote social, cognitive, and physical inclusion, leading to positive outcomes. Using various quantitative and qualitative methodologies, this project endeavors to collect and synthesize the evidence for supporting and enhancing accessibility and inclusiveness in informal STEM learning for K-12 neurodiverse learners. It will explore key features of informal STEM learning and effective, evidence-based strategies to effectively engage children and youth with neurological conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), dyslexia, and dyspraxia, in informal STEM learning environments. The findings of this complex synthesis will provide a timely contribution to deeper understanding of supports for neurodiversity while also highlighting areas that inform further research, shifts in practice, and policy.

The systematic review will occur over a two-year period. It will focus on identifying program elements that promote inclusion of children and youth with neurodevelopmental disabilities in informal STEM learning contexts. Specifically, the review will explore two overarching research questions and several sub-research questions:


RQ1. What program elements (teaching and learning variables) in informal STEM learning settings facilitate inclusion of K-12 neurodiverse STEM learners? Sub-RQ1a: What are the overlapping and discrete characteristics of the program elements that facilitate social, cognitive, and physical inclusion?

Sub-RQ1b: In what ways do the program elements that facilitate inclusion vary by informal STEM learning setting?


RQ2: What program elements (teaching and learning variables) in informal STEM learning settings are correlated with benefits for K-12 neurodiverse STEM learners? Sub-RQ2a: What are the overlapping and discrete characteristics of the program elements that correlate with increased STEM identity, self- efficacy, interest in STEM, or STEM learning?

Sub-RQ2b: In what ways do the program elements that correlate with positive results for students vary by informal STEM learning setting? The research synthesis will consider several different types of studies, including research and evaluation; experimental and quasi-experimental designs; quantitative, qualitative, and mixed methods; and implementation studies.




The research team will (a) review all analyses and organize findings to illustrate patterns, factors, and relationships, (b) identify key distinctions and nuances derived from the contexts represented in the literature, and (c) revisit and confirm the strength of evidence for making overall assertions of what works, why, and with whom. The findings will be disseminated in practice briefs, journal articles, the AISL resource center, as well as presentations and materials for researchers, practitioners, and informal STEM leaders. Ultimately, this work will result in a comprehensive synthesis of effective informal STEM learning practices for neurodiverse K-12 learners and identify opportunities for further research and development.

This literature review and meta-analysis project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Ronda Jenson Kelly Roberts
resource project Public Programs
Over the past two decades the prevalence of Autism Spectrum Disorder (ASD) has nearly tripled and yet there is much to learn about serving this audience well. After high school exit, most are left to navigate the world without appropriate support or the requisite skills necessary for success. Educators working in informal science institutions (ISI) can better promote both social interaction and engagement in STEM education for individuals with ASD. A learning environment in which the learner chooses content aligned with their personal interests and where learning can be multifaceted (verbal, hands-on, fast or slow, social or solitary, directed or inquiry based, physical, etc.) is consistent with the central tenets of an evidence-based, outcome-driven approach for autism intervention. ISI educators have the desire but may not have sufficient and timely knowledge and skills to engage and support this audience. Currently, many are working at the local level to develop new programs and approaches for patrons with ASD, with little evaluation or research and not building on each other's work. The project will develop a rigorous customized professional learning experience designed to enhance capacity of ISIs broadly in ASD support techniques and strategies. The goal is to enable more inclusive opportunities for people with ASD based on current and emerging promising practices. The project's theory of action is that the ability of people with ASD to participate in traditional, mainstream experiences will improve their motivation to seek other similar opportunities, build interpersonal skills critical to successful interaction in society, formal education, and careers. This, in turn, will help individuals with ASD gain the skills and confidence needed to pursue STEM academically and professionally. The project is a collaboration between the Institute for Learning Innovation, the SciTech Institute, and the Southwest Autism Research & Resource Center (SARRC). This project is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The pilot's main research questions are: (1) To what degree does the professional learning program support the learning outcomes in knowledge, awareness, interest, skills, attitude, and behavior change in informal science education providers? and (2) What features of the program do educators consider most effective for improving their ability to serve this audience? Four Arizona ISIs will participate in a research-based design study; their staff will also comprise the founding members of a Community of Practice aimed at sharing promising practices and promoting broader engagement among the informal science education community. The professional development (PD) will be provided by SARRC. New formative evaluation skills will support ongoing innovation and build participant capacity. Leveraging this training, the ISIs will create and test new approaches and programs, apply new skills in formative evaluation, and develop internal workplace programs to create cultures of ASD understanding. A pilot research study will recruit 20 diverse individuals with ASD who will visit each institution prior to and after the PD for staff. The research will measure the degree to which the PD impacts attendee experience as well as assess the science learning that occurred because of their visit. This project will advance collaboration between ASD experts and ISI educators to iteratively develop effective museum learning strategies. Other goals of this work are to provide important insights into (a) the current state of accessibility programs in ISI venues nationally, (b) how PD can be leveraged to help institutions reach true inclusion, and (c) initial evidenced-based approaches for inclusion of individuals on the Autism spectrum in mainstream informal environments. In addition to the research findings, deliverables include an ASD PD model, national inventory of current practices and programs that support ASD learning and participation, and the establishment of a Community of Practice.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Judith Koke Jeremy Babendure Christopher Smith
resource project Public Programs
Many people with autism are unemployed and isolated because they do not have access to educational opportunities that support them in finding jobs that match their potential. This research seeks to empower adolescents with autism to seek out careers that are well-matched with their strengths and interests. Many people with autism are interested in computing, a marketable skill. This project builds from this interest by developing strategies to effectively engage teenagers with autism. Although people with autism share a diagnosis, each person is unique and has the capacity to become a visionary and transformer in society in their own way. Teenagers with autism will be invited to participate in a game design workshop hosted by an award-winning, not-for-profit Tech Kids Unlimited. Teenagers often enjoy learning how to design games and can learn many useful skills through design. During each workshop, teenagers will rate different teaching strategies using a picture-based survey developed in collaboration with people with autism. It is expected that teenagers with autism who have difficulty focusing to be most engaged by strategies that include multiple types of information (for example, pictures, text, and speech). The team also expects those who are more focused to be most engaged by strategies with fewer sources of information. By developing clear guidelines to help educators match their teaching styles to how different students learn, the project will help them engage youth more effectively. Through an iterative process, the team will revise the game design workshop to make it more engaging for people with different types of autism. New groups of teenagers with autism will participate in improved game design workshops that include an internship in a technology company. An important outcome is to understand which strategies are engaging for young people with autism that help them develop the belief in their skills needed to seek out fulfilling careers. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Research in Service to Practice project has the following aims: 1) Identify evidence-based strategies to engage youth with autism spectrum disorder (ASD) in informal STEM learning opportunities that are well matched to their attentional profiles, 2) Determine if engaging youth with ASD in informal STEM learning opportunities increases their STEM self-efficacy, and 3) Determine if engagement with STEM internship activities is associated with increased interest in STEM careers and career decision-making self-efficacy. Principles of Universal Design (UD) and Mayer's principles of effective multimedia instruction are frameworks employed to identify instructional strategies that are emotionally engaging for youth with diverse attentional profiles. The degree to which attentional differences contribute to different patterns of emotional engagement with informal STEM learning will be investigated. Guided by assessments of youth's engagement with different learning opportunities, 'diversity blueprints' or specific instructional strategies that help youth with diverse attentional profiles engage will be developed. After identifying strategies to engage neurodivergent (neurologically diverse) youth in informal STEM learning opportunities, the extent to which these strategies generalize to STEM internship sites will be explored. The team will study potential specificity of the types of contexts that promote different types of self-efficacy, with engagement with extracurricular STEM learning opportunities expected to preferentially target STEM self-efficacy while engagement with internships targets career decision-making self-efficacy. Although UD is often endorsed to promote STEM learning among students with disabilities, the proposed research would be the first iterative adaptation of instructional strategies designed to engage neurodivergent teens in informal STEM learning guided by a systematic analysis of how they engage with and feel about instructional strategies. Project deliverables include workshops for local after-school program providers, publications, a project website, and a multimodal guide of the process of developing 'diversity blueprints' and how to apply them for informal STEM educators and researchers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Hurst Katie Gillespie