Skip to main content

Community Repository Search Results

resource evaluation Professional Development and Workshops
The Wild Center has been running climate programs for over a decade and has embraced a culture of evaluation in its work to reflect on and improve the programs over time. This evaluation built on findings from prior evaluations to further explore the programs’ impact on rural youth and teachers, but also sought to understand broader contributions to the ecosystem of organizations doing climate resilience work across New York state and around the country.  
DATE:
TEAM MEMBERS: Katie Chandler Rachel Jackson Hannah Heller
resource evaluation Public Programs
This project builds off prior work conducted for the Science Center Public Forums project (NA15SEC008005) where eight forums were held at different sites across the US related to four climate hazards (drought, sea level rise, extreme heat, and extreme precipitation).
DATE:
resource research Higher Education Programs
The project team published a research synopsis article with Futurum Science Careers in Feb 2023 called “How Can Place Attachment Improve Scientific Literacy?”
DATE:
TEAM MEMBERS: Julia Parrish Benjamin Haywood
resource research Public Programs
This guidebook will help you plan your action project. The initial brainstorm pages will help you consider where to start, and the Action Project Framework will navigate you through steps to get to your destination: the completion of your project!
DATE:
TEAM MEMBERS: Kathleen Gray Dana Haine
resource project Public Programs
This project focuses on environmental health literacy and will explore the extent to which diverse rural and urban youth in an out-of-school STEM enrichment program exhibit gains in environmental health literacy while engaged in learning and teaching others about community resilience in the face of changing climates. Science centers and museums provide unique opportunities for youth to learn about resilience, because they bring community members together to examine the ways that current science influences local decisions. In this project, teams of participating youth will progress through four learning modules that explore the impacts of changing climates on local communities, the local vulnerabilities and risks associated with those changes, possible mitigation and adaptation strategies, and building capacities for communities to become climate resilient. After completion of these modules, participating youth will conduct a resilience-focused action project. Participants will be encouraged to engage peers, families, friends, and other community stakeholders in the design and implementation of their projects, and they will gain experience in accessing local climate and weather data, and in sharing their findings through relevant web portals. Participants will also use various sensors and web-based tools to collect their own data.



This study is guided by three research questions: 1) To what extent do youth develop knowledge, skills, and self- efficacy for developing community resilience (taken together, environmental health literacy in the context of resilience) through participation in museum-led, resilience-focused programming? 2) What program features and settings foster these science learning outcomes? And 3) How does environmental health literacy differ among rural and urban youth, and what do any differences imply for project replication? Over a two- year period, the project will proceed in six stages: a) Materials Development during the first year, b) Recruitment and selection of youth participants, c) Summer institute (six days), d) Workshops and field experiences during the school year following the summer institute, e) Locally relevant action projects, and f) End- of-program summit (one day). In pursuing answers to the research questions, a variety of data sources will be used, including transcripts from youth focus groups and educator interviews, brief researcher reflections of each focus group and interview, and a survey of resilience- related knowledge. Quantitative data sources will include a demographic survey and responses to a self-efficacy instrument for adolescents. The project will directly engage 32 youth, together with one parent or guardian per youth. The study will explore the experiences of rural and urban youth of high school age engaged in interactive, parallel programming to enable the project team to compare and contrast changes in environmental health literacy between rural and urban participants. It is anticipated that this research will advance knowledge of how engagement of diverse youth in informal learning environments influences understanding of resilience and development of environmental health literacy, and it will provide insights into the role of partnerships between research universities and informal science centers in focusing on community resilience.
DATE: -
TEAM MEMBERS: Kathleen Gray Dana Haine
resource evaluation Public Programs
A two-year pilot a two-year pilot and feasibility study funded by NSF’s Advancing Informal STEM Learning (AISL) Program (NSF Award # 1906846)
DATE:
TEAM MEMBERS: Kathleen Gray Dana Haine Rebekah Davis Shaun Kellogg
resource project Informal/Formal Connections
Museums in the US receive approximately 55 million visits each year from students in school groups. Field trip visits to an art museum have been found to positively impact critical thinking skills, empathy and tolerance - an increase that can be even more significant for youth from rural or high-poverty regions. While field trips are popular, especially at science museums, there have been no experimental studies about their impact on STEM career choices and interests, much less any which used a culturally sensitive and responsive approach. Given the resources put into field trips, this study investigates if causal links can be drawn between museum experiences and impact on youth. The Museum of Science & Industry uses a Learning Labs approach for engaging its visitors. These "Learning Labs" are facilitated experiences that run roughly an hour. Currently there are 12 lab topics. This study focuses on MedLab--one of the learning labs--as the setting for the research. MedLab is designed for on-site and online experience using ultra-sophisticated and highly versatile technology in challenges taken from research on the top healthcare issues that face adolescents in their communities.

This study is informed by research and theory on Social Cognitive Career Theory (SCCT) and Racial and Ethnic Identity. The former describes a process many follow when thinking about career options, broadly. The latter describes how people see themselves in the world through their membership with a racial and/or ethnic group. Both processes can collectively influence STEM career choices. This study follows an embedded mixed-method design. The quantitative portion includes an experimental, pre/post/delayed post-test design of both educators and their students using multiple measures taken mostly from previously published instruments. The qualitative portion includes observation rubrics of MedLab sessions along with interviews and focus groups with staff, educators, students and families that take place both within and outside of the museum. This is an experimental study of moderate size of both heterogeneous teacher and student populations in real world settings. It involves comparing youth and educators that participate in MedLab with those who do not. By conducting research that looks at each community through the lens of their unique experiences, the research will measure their impact more sensitively and authentically, addressing a gap in current literature on informal science, technology, engineering, or mathematics (STEM) career education with diverse students.

This study is funded by the Advancing Informal STEM Learning (AISL) program and the Innovative Technology Experiences for Students and Teachers (ITEST) program.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Aaron Price Bernadette Sanchez Aerika Loyd Rex Babiera Nicole Kowrach
resource project Public Programs
Abstract: We aim to disrupt the multigenerational cycle of poverty in our rural indigenous (18% Native American and 82% Hispanic) community by training our successful college students to serve as role models in our schools. Poverty has led to low educational aspirations and expectations that plague our entire community. As such, its disruption requires a collective effort from our entire community. Our Collective unites two local public colleges, 3 school systems, 2 libraries, 1 museum, 1 national laboratory and four local organizations devoted to youth development. Together we will focus on raising aspirations and expectations in STEM (Science, Technology, Engineering and Mathematics) topics, for STEM deficiencies among 9th graders place them at risk of dropping out while STEM deficiencies among 11th and 12th graders preclude them from pursuing STEM majors in college and therefore from pursuing well paid STEM careers. We will accomplish this by training, placing, supporting, and assessing the impact of, an indigenous STEM mentor corps of successful undergraduate role models. By changing STEM aspirations and expectations while heightening their own sense of self-efficacy, we expect this corps to replenish itself and so permanently increase the flow of the state's indigenous populations into STEM majors and careers in line with NSF's mission to promote the progress of science while advancing the national health, prosperity and welfare.

Our broader goal is to focus the talents and energies of a diverse collective of community stakeholders on the empowerment of its local college population to address and solve a STEM disparity that bears directly on the community's well-being in a fashion that is generalizable to other marginalized communities. The scope of our project is defined by six tightly coupled new programs: three bringing indigenous STEM mentors to students, one training mentors, one training mentees to value and grow their network of mentors, and one training teachers to partner with us in STEM. The intellectual merit of our project lies not only in its assertion that authentic STEM mentors will exert an outsize influence in their communities while increasing their own sense of self-efficacy, but in the creation and careful application of instruments that assess the factors that determine teens' attitudes, career interests, and behaviors toward a STEM future; and mentors' sense of self development and progress through STEM programs. More precisely, evaluation of the programs has the potential to clarify two important questions about the role of college-age mentors in schools: (1) To what degree is the protege's academic performance and perceived scholastic competence mediated by the mentor's impact on (a) the quality of the protege's parental relationship and (b) the social capital of the allied classroom teacher; (2) To what degree does the quality of the student mentor's relationships with faculty and peers mediate the impact of her serving as mentor on her self-efficacy, academic performance, and leadership skills?
DATE: -
TEAM MEMBERS: Steven Cox Ulises Ricoy David Torres
resource project Public Programs
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.

This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.
DATE: -
resource evaluation Public Programs
With support from the Institute of Museum and Library Services, The Wild Center (TWC) engaged Insight Evaluation Services (IES) to assess the impact of specific outreach activities of the Northern New York Maple Project between September 2013 and September 2015. Data for this two-year evaluation study were collected via in-depth telephone interviews conducted with a total of 25 participants, including 16 Tupper Tappers (Tupper Lake area residents who engaged in backyard tapping to provide sap for syrup production at the museum through the Community Maple Project), four local school teachers
DATE:
TEAM MEMBERS: Kirsten Buchner
resource project Media and Technology
Informal Education at NASA Centers: Extending the Reach is a highly leveraged, modular, project-based approach to improving education opportunities for students, formal and informal educators, and life-long learners in NASA Ames Research Center’s local community and beyond. In partnership with the Aerospace Education, Research and Operations (AERO) Institute, NASA Ames has been developing two projects: Exploration Center Field Trips and Field Trip in a Box. California Teaching Fellows Foundation, as a sub awardee, has been expanding their After School University (ASU) program. The division has the goal of supporting NASA’s Education Outcome 2 with improved educational opportunities for all in the NASA Ames Visitor Center and opportunities to bring NASA content into the classroom to improve students understanding of STEM as well as improve teachers understanding and ability to teach NASA-related STEM topics. The division also has the goal of supporting NASA’s Education Outcome 3 by expanding ASU to include NASA-based STEM learning opportunities to 360 additional students in six rural schools as well as train 12 additional Teaching Fellows (Fresno State University future teachers). Through these objectives, NASA Ames has produced 10 Field Trip in a Box kits as well as new and expanded learning opportunities for all, especially 3rd – 8th grade classes, in the NASA Ames Visitor Center. ASU has reached 500 students in 10 schools and hosted 12-14 year old learners in a five-week computer-based flight simulation class, called Flying for Future Pilots.
DATE: -
TEAM MEMBERS: Brenda Collins
resource project Public Programs
This Pathways Project connects rural, underserved youth and families in Eastern Washington and Northern Idaho to STEM concepts important in sustainable building design. The project is a collaboration of the Palouse Discovery Science Center (Pullman, WA), Washington State University and University of Idaho, working in partnership with rural community organizations and businesses. The deliverables include: 1) interactive exhibit prototype activities, 2) a team cooperative learning problem-solving challenge, and (3) take-home materials to encourage participants to use what they have learned to investigate ways to make their homes more energy-efficient and sustainable. The project introduces youth and families to the traditionally difficult physics concept of thermal energy, particularly as it relates to sustainable building design. Participants explore how building materials and their properties can be used to control all three types of heat transfer: conduction, convection, and radiation. The interactive exhibit prototypes are coupled with an Energy Efficient Engineering Challenge in which participants, working in cooperative learning teams, use information learned from the exhibit prototype activities to retrofit a model house, improving its energy efficiency. The project components are piloted at the Palouse Discovery Science Center, and then travel to three underserved rural/tribal communities in Northern Idaho and Eastern Washington. Front-end and formative evaluation studies will demonstrate whether this model advances participant understanding of and interest in STEM topics and careers. The project will yield information about ways that other ISE practitioners can effectively incorporate cooperative learning strategies in informal settings to improve the transferability of knowledge gained from exhibits to real-world problem-solving challenges, especially for rural and underserved audiences. This project will also provide the ISE field with: 1) a model for increasing the capacity of small, rural science centers to form collaborative regional networks that draw on previously unused resources in their communities and provide more effective outreach to the underrepresented populations they serve, and 2) a model for coupling cooperative learning with outreach exhibits, providing richer experiences of active engagement.
DATE: -
TEAM MEMBERS: Kathleen Ryan Kathy Dawes Christine Berven Anne Kern Patty McNamara