Skip to main content

Community Repository Search Results

resource project Exhibitions
The Mississippi Children’s Museum will complete WonderBox, a 1,500 square foot-STEAM exhibit in the museum’s existing arts gallery. WonderBox will address a critical need in Mississippi for increased education in STEAM subjects during elementary grades—particularly for those individuals who are underserved and lack adequate access to resources. Through the proposed exhibit area and programming, children from all backgrounds will explore topics such as design, art, coding, robotics, engineering, and circuitry. It will encourage active exploration and inquiry-based learning while facilitating parent/caregiver interaction with hands-on activities and guided conversations that will inspire children to design, create, and invent. Additionally, the gallery will offer children opportunities to interact with concepts from industries that are vital to Mississippi’s economy in an environment that encourages innovation and creative problem solving.
DATE: -
TEAM MEMBERS: Susan Easom Garrard
resource project Exhibitions
Explora will expand its work with local students to increase their awareness of STEM career fields. Working primarily with low-income teens of color and their families, the museum will partner with local organizations to co-create an inquiry-based exhibit that highlights STEM research and practice in Albuquerque that can lead to career paths for jobs in STEM fields. The museum will revise its current exhibition development process to reflect a community engagement strategy that it has used successfully for public programs, incorporating community voice, public knowledge, and local STEM content experts. Additional project activities will include capacity-building for museum staff to improve their ability to engage deeply with community partners and a series of Teen Science Cafes in the new exhibit space that provide opportunities for teens to meet and talk with local STEM professionals and employers.
DATE: -
TEAM MEMBERS: Kristin Winchester Leigh
resource project Public Programs
DuPage Children's Museum will enhance visitor engagement by incorporating current research on infant and toddler development to redesign two exhibits and develop an educational program for low-income caregivers. The museum will partner with two community-based organizations, Teen Parent Connection and Family Focus DuPage, to collaborate in the project and refer clients to participate in the educational programs. The museum will present twelve onsite sessions that will enable parents and caregivers to nurture an understanding of STEM fundamentals at the museum and at home for their young children. Participants will be given educational videos and take-home kits that correspond with the educational sessions. Project activities will also include training to help museum staff use the exhibits to further a visitor's learning experience. The museum will disseminate project results to other children's museums and early childhood educators and professionals.
DATE: -
TEAM MEMBERS: Kimberly Stull
resource research Public Programs
Informal STEM field trip programming is a large, yet under-researched area of the education landscape. Informal STEM education providers are often serving a more privileged section of society, leading to a risk of perpetuating inequalities seen throughout the education landscape. In an attempt to address the lack of research, this thesis explores the relationship between educational equity and informal STEM field trips. The intention was to collect data using a critical ethnography approach to the methods of qualitative questionnaire and interviews of informal STEM educators. A change in
DATE:
TEAM MEMBERS: Sal Alper
resource project Exhibitions
The project will develop and research how an emerging technology, immersive virtual reality (IVR) using head mounted displays (HMDs), can enhance ocean literacy and generate empathy towards environmental issues. Recent advances in design have resulted in HMDs that provide viscerally realistic and immersive experiences that situate participants in underwater or other remote environments. IVR can provide many people with virtual access to these environments, including persons with disabilities, people living away from coastal areas, or those who lack access for other reasons (e.g., low-income families, underserved/underrepresented communities, persons untrained in diving). The project will develop a high quality 360-degree underwater film that includes live action footage, animation, and interactive elements. The IVR experience will take the participant through an immersive underwater journey of a Pacific reef, using realistic visualizations, narrative, and a compelling story to engage participants in learning the ecology and biology of coral reefs, as well as the impacts of climate change and human disturbances on ocean ecosystems. In addition to the IVR ocean journey, the project will integrate interactive functionality of being on a reef during mass coral spawning, an annual natural phenomenon through which coral reefs replenish their populations. With hand-held controllers, participants will be able to "swim" through the water, watch the degraded reef recover and grow and will have the ability to change the rate of coral recovery and learn how increases in temperature impede coral recovery. While research has been conducted on early, desk-top versions of IVR, the potential impact of IVR on learning is still unclear. The research findings will help guide the development of IVR for use in informal STEM environments such as aquariums, zoos, science museums, and others. The IVR experience will be shared on online platforms for home viewing, at film festivals and conferences, and in informal learning environments.

The project addresses the need for research on the impacts of IVR devices as it become more affordable and more widely used at home and in other informal and formal environments. Few studies have investigated how design elements impact the user in IVR, in which the increased immersion affects the stimuli perception and cognitive processing. The research will assess the learning affordances and impacts of the IVR experience on participant ocean literacy (adapting items from an existing ocean literacy survey), environmental empathy/feelings of presence (naturalistic observations and post-experience interviews), and perceived self-efficacy (pre-post survey, post-interview interviews). In addition, the project will research how segmentation (i.e., a continuous experience vs. an experience with breaks), generative learning tasks (hands-on experiences and interactive during IVR), and gender of the narrator in an IVR experience supports learning about ocean environments. Researchers will collect data from students attending high schools with predominantly minority student enrollments. Research findings will be widely shared through peer-reviewed publications, conference presentations, and publications for educators and designers.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jeremy Bailenson Erika Woolsey
resource project Public Programs
One way to encourage youth to pursue training in the STEM fields and enter the STEM workforce is to foster interest and engagement in STEM during adolescence. Informal STEM Learning Sites (ISLS) provide opportunities for building interest and engagement in the STEM fields through a multitude of avenues, including the programming that they provide for youth, particularly teens. Frequently, ISLS provide opportunities to participate in volunteer programs, internships or work, which allow teens both to learn relevant STEM knowledge as well as to share that knowledge with others through opportunities to serve as youth educators. While youth educator programs provide rich contexts for teens to engage as both learners and teachers in these informal STEM environments, research to date has not yet identified the relationship between serving as youth educators and STEM engagement. Thus, the goal of this project is to document the impact of youth educators on visitor learning in ISLS and to identify best practices for implementing youth educator programs. The project studies STEM interests and engagement in the youth participants and the visitors that they interact with at six different ISLS in the US and UK. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This project examines youth educator experiences related to STEM identity, educational aspirations, and motivation. The project also identifies outcomes that the youth educators have on visitors to ISLS in terms of knowledge, interest, and engagement in STEM. The specific aims are: 1) Outcomes for Teens - To measure the longitudinal impact of participation in an extended youth educator experience in an ISLS; 2) Outcomes for Visitors - To compare visitor engagement with and learning from exhibits in ISLS when they interact with a youth educator, relative to outcomes of interacting with an adult educator or no educator; and 3) Outcomes Across Demographics and STEM Sites - To examine differences in visitor engagement based on participant characteristics such as socio-economic status (SES), age, gender, and ethnicity and to compare outcomes of youth educator experiences across different types of ISLS. This research, which draws on expectancy value theory and social cognitive theory, will follow youth participants longitudinally over the course of 5 years and use latent variable analyses to understand the impact on the youth educators as well as the visitors with whom they interact. Importantly, the results of this research will be used to develop best practices for implementing youth educator programs in ISLS and the results will be disseminated to both academic and practice-based communities.

This project has clear and measurable broader impacts in a variety of ways. First, the project provides guidance to improve programming for youth in ISLS, including both the sites involved directly in the research and to the larger community of ISLS through evaluation, development, and dissemination of best practices. Additionally, this project provides rigorous, research-based evidence to identify and describe the outcomes of youth educator programs. This study directly benefits the participants of the research, both the visiting public and the youth educators, through opportunities to engage with science. The findings speak to issues of access and inclusivity in ISLS, providing insight into how to design environments that are welcoming and accessible for diverse groups of learners. Finally, this project provides evidence for best practices for ISLS in developing programs for youth that will lead to interest in and pursuit of STEM careers by members of underrepresented groups.
DATE: -
TEAM MEMBERS: Adam Hartstone-Rose Matthew Irvin Kelly Lynn Mulvey Elizabeth Clemens Lauren Shenfeld Adam Rutland Mark Winterbottom Frances Balkwill Peter McOwan Katie Chambers Stephanie Tyler Lisa Stallard