Skip to main content

Community Repository Search Results

resource project Media and Technology
The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
DATE: -
resource project Media and Technology
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).

Scientists and researchers from fields as diverse as oceanography and ecology, astronomy and classical studies face a common challenge. As computer power and technology improve, the sizes of data sets available to us increase rapidly. The goal of this project is to develop a new methodology for using citizen science to unlock the knowledge discovery potential of modern, large data sets. For example, in a previous project Galaxy Zoo, citizen scientists have already made major contributions, lending their eyes, their pattern recognition skills and their brains to address research questions that need human input, and in so doing, have become part of the computing process. The current Galaxy Zoo project has recruited more than 200,000 participants who have provided more than 100 million classifications of galaxies from the Sloan Digital Sky Survey. This project builds upon early successes to develop a mode of citizen science participation which involves not only simple "clickwork" tasks, but also involves participants in more advanced modes of scientific thought. As part of the project, a symbiotic relationship with machine learning tools and algorithms will be developed, so that results from citizen scientists provide a rich training set for improving algorithms that in turn inform citizen science modes of participation. The first phase of the project will be to develop a portfolio of pilot projects from astrophysics, planetary science, zoology, and classical studies. The second phase of the project will be to develop a framework - called the Zooniverse - to facilitate citizen scientists. In particular, research and machine-learning communities will be engaged to identify suitable projects and data sets to integrate into Zooniverse.

The ultimate goal with the Zooniverse is to create a sustainable future for large-scale, internet-based citizen science as part of every researcher?s toolkit, exemplifying a new paradigm in computational thinking, tapping the mental resources of a community of lay people in an innovative and complex manner that promises a profound impact on our ability to generate new knowledge. The project will engage thousands of citizens in authentic science tasks leading to a better public understanding of science and also, by the engagement of students, leading to interest in scientific careers.
DATE: -
TEAM MEMBERS: Geza Gyuk Pamela Gay Christopher Lintott Michael Raddick Lucy Fortson John Wallin
resource project Media and Technology
The Space Science Institute is developing an astronomy educational social game for the Facebook platform. The game uses the "sporadic play" model popular with many Facebook games, in which players take only a few actions at a time, then return to explore the results. Here players will create their own stars and planetary systems that evolve over time at a rate of a million years a minute. Players set systems in motion, revisiting the game over days or weeks to make new choices and alter strategies. The game is in effect an end-to-end solar system simulation, following a star from birth to death. As a result it encompasses a wide variety of core concepts in astronomy, including galactic structure, stellar evolution and lifecycles, planetary formation and evolution, and habitability and "habitable zones." The accompanying research program will examine the effectiveness of this type of game in informal education, and the effects of the social network on meeting the education goals, including viral spread, cooperative play, and discussions about the game and its underlying content in associated online forums.
DATE: -
TEAM MEMBERS: James Harold Dean Hines Kate Haley Goldman
resource project Media and Technology
This Broad Implementation media project (building upon prior NSF award 0639001) will address science literacy among Latinos via mass media, increasing the amount of Spanish-language science content available in the U.S., increasing the representation of Latino scientists in mainstream media, and expanding the knowledge base about Latino's interest and engagement in science. The STEM content will be based on the research conducted by the Hispanic scientists being interviewed and therefore includes a wide range of topics including astronomy, biology, physics, earth sciences, and engineering. The criteria for selecting the Hispanic researchers and the content is based on the importance of the research, how it is immediately relevant to a Latino audience, and how it draws on the indigenous knowledge system or ethnic pride for U.S. Latinos. Project deliverables include 150 audio-video interviews with Hispanic scientists distributed on both commercial Hispanic radio and TV stations, as well as public broadcasting and online. In addition to the broadcasts, social media tools such as Facebook and Twitter will be used to reach out and engage Hispanics. It is estimated that 300 Spanish-language radio stations will air the programs, resulting in 3 million radio impressions for each daily 60-second broadcast. Television broadcasts are estimated to result in another 2 million impressions per program. Project partners include the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS); V-Me, a national Hispanic educational channel; KLRN, the San Antonio, Texas public television station that will provide the national PBS distribution; and DaGama Web Studio that will develop and implement the social media marketing plan to attract and engage Latinos online. Comprehensive evaluations of project deliverables and impact will be conducted by Informal Learning Solutions (video-audio formative evaluations), and Knight-Williams Research (summative evaluation of project impact). The Summative Evaluation Plan will focus on the programs\' overall appeal, clarity, and effectiveness in meeting the two key audience objectives in the proposal: (1) increasing familiarity with and understanding of science concepts among U.S. Latinos, and (2) demonstrating engagement activities such as talking with friends/family about the presented topics, and/or seeking out additional information. It will furthermore assess the extent to which listeners and viewers find the Hispanic researchers featured in the programs to be effective communicators and the importance they assign to hearing from Hispanic researchers themselves. It will look at whether and how the programs are effective selecting topics with immediate relevance to listeners'/viewers' everyday lives. Finally, the evaluation will gather information about listeners'/viewers' demographic and background characteristics, including their country of origin, degree of fluency in Spanish, reasons for preferring Spanish media, number of generations in the U.S., reasons for tuning into the programming, efforts to recommend the programs to others, and the likelihood of continuing to listen to or view the programs in the future.
DATE: -
TEAM MEMBERS: William Britton
resource project Media and Technology
This CRPA project will develop a game for mobile devices called the "RapidGuppy". It provides users (students 12-21 years of age) with an interesting and fun way to learn details about biological adaptation and genetic change. The game teaches users about the environmental factors that lead to adaptation. More than 30 years of research on the Trinidadian Guppy that "rapidly" evolves (over 3-5 years) is the basis for the game. The research, databases, and mini-documentaries that support the "RapidGuppy" game are linked to allow users to easily delve deeper into these materials. An extensive social media campaign will be used to market the game and the public facing website. Partners in this endeavor include: University of California-Riverside, Habitat Seven, Magmic Inc., and Edu, Inc. In this project, the mobile device game will be backed by a sophisticated website that contains detailed research results from the field and mini-documentaries showing real fish and the actual research processes as well as researchers and scientists to promote role model development. Interested individuals may also directly access the videos and research results via the website. The target audiences are youth who are prone to play electronic games and the general public. The comprehensive evaluation plan will assess the learning outcomes resulting from the mini-documentaries, in-game content, and website, as well as the playability of the game and website functionality. Impacts resulting from the social media campaign and outreach to underserved audiences will also be measured. Because of the major social media campaign, this project may increase the level of interest in the science of evolution and genetic change, and raise awareness of STEM careers. If the user groups become excited about the game and the inherent messages, it is anticipated that the public will gain a better understanding of the factors responsible for genetic change.
DATE: -
TEAM MEMBERS: David Reznick
resource project Media and Technology
The University of California, Davis Tahoe Environmental Research Center (TERC), UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES), ECHO Lake Aquarium and Science Center (ECHO), UC Berkeley Lawrence Hall of Science (LHS), and the Institute for Learning Innovation (ILI) will study how 3-D visualizations can most effectively be used to improve general public understanding of freshwater lake ecosystems and Earth science processes through the use of immersive three-dimensional (3-D) visualizations of lake and watershed processes, supplemented by tabletop science activity stations. Two iconic lakes will be the focus of this study: Lake Tahoe in California and Nevada, and Lake Champlain in Vermont and New York, with products readily transferable to other freshwater systems and education venues. The PI will aggregate and share knowledge about how to effectively utilize 3-D technologies and scientific data to support learning from immersive 3-D visualizations, and how other hands-on materials can be combined to most effectively support visitor learning about physical, biological and geochemical processes and systems. The project will be structured to iteratively test, design, and implement 3-D visualizations in both concurrent and staggered development. The public will be engaged in the science behind water quality and ecosystem health; lake formation; lake foodwebs; weather and climate; and the role and impact of people on the ecosystem. A suite of publicly available learning resources will be designed and developed on freshwater ecosystems, including immersive 3-D visualizations; portable science stations with multimedia; a facilitator's guide for docent training; and a Developer's Manual to allow future informal science education venues. Project partners are organized into five teams: 1) Content Preparation and Review: prepare and author content including writing of storyboards, narratives, and activities; 2) 3-D Scientific Visualizations: create visualization products using spatial data; 3) Science Station: plan, design, and produce hands-on materials; 4) Website and Multimedia: produce a dissemination strategy for professional and public audiences; 4) Evaluation: conduct front-end, formative, and summative evaluation of both the 3-D visualizations and science activity stations. The summative evaluation will utilize a mixed methods approach, using both qualitative and quantitative methods, and will include focus groups, semi-structured interviews, web surveys, and in-depth interviews. Leveraging 3-D tools, high-quality visual displays, hands-on activities, and multimedia resources, university-based scientists will work collaboratively with informal science education professionals to extend the project's reach and impact to an audience of 400,000 visitors, including families, youth, school field trip groups, and tourists. The project will implement, evaluate, and disseminate knowledge of how 3-D visualizations and technologies can be designed and configured to effectively support visitor engagement and learning about physical, biological and geochemical processes and systems, and will evaluate how these technologies can be transferred more broadly to other informal science venues and schools for future career and workforce development in these critical STEM areas.
DATE: -
TEAM MEMBERS: Geoff Schladow Louise Kellogg Steven Yalowitz Sherry Hsi Phelan Fretz
resource project Media and Technology
The ScienceMakers: African Americans and Scientific Innovation is a three-year project designed to increase awareness of the contributions of African American scientists, raise awareness of STEM careers, and increase understanding of STEM concepts through the creation of education, media, and career resources. The project team is supplemented with an extensive advisory board of STEM education, museum, and community professionals, as well as representatives from partnering science centers. Project partners include the St. Louis Science Center, Liberty Science Center, New York Hall of Science, Pacific Science Center, Franklin Institute, COSI Columbus, Lawrence Hall of Science, SciWorks, Detroit Science Center, and MOSI Chicago. Additional collaborators include middle and high schools with high minority populations. Project deliverables include a fully accessible multi-media archive of video oral histories of 180 African American scientists and web resources and contests utilizing Web 2.0 and 3.0 applications such as social networking tools that foster engagement and build community around the ScienceMakers. Public programs for youth and adults at science museums, after-school programs, and community organizations highlight African American contributors, and encourage interest in science and science careers and the ScienceMakers DVD Toolkit expand the reach of this innovative project. Intended impacts for youth and adults consist of increased awareness of STEM concepts and career options, exposure to African American scientists, awareness of the contributions of minority scientists, and 21st century skills. Intended impacts on professional audiences include increased awareness and understanding of STEM careers and workforce diversity, 21st century skills, and STEM career options. The project evaluation, conducted by Knight-Williams Research Communications, utilizes a mixed-methods approach. The evaluation assesses the impact of the oral history archive, public programs, and other deliverables on public and professional audiences' knowledge, interest, and awareness of the contributions of African American scientists, STEM concepts, and STEM careers. The evaluation also includes an ethnography which examines factors that contribute to success in STEM careers by African-American scientists. The ScienceMakers significantly expands the world\'s largest searchable oral history archive and may have an enduring impact on research and practice in the field of informal science education. The project has the potential to enrich programs and exhibits, while raising awareness of the contributions of African-American scientists among informal science education professionals and the general public.
DATE: -
TEAM MEMBERS: Julieanna Richardson Alison Bruzek
resource project Media and Technology
This proposed Communicating Research to Public Audiences (CRPA) project outlines a pathway for communicating how climate change can affect a watershed area that supplies water for a specific region. The educational platforms will address the geology of the Caldera along with meteorology, ecology and hydrology. The project will focus on the ongoing scientific research processes and the impact of climate change to the physical system as well as to the citizens who depend on this resource. Partners in this endeavor include New Mexico EPSCOR, the University of New Mexico, the Valles Caldera National Preserve, the New Mexico Museum of Natural History and Science, Santa Fe Productions and Tim Aydelott Productions. The project team will create a PBS television documentary in English and Spanish, including a Native American Jemez Pueblo storyteller who will describe the natural environment of the Caldera. The team will also create a YouTube channel with updatable clips, a Facebook fan page, and a climate change exhibit. The evaluation will include front-end and summative components, and will be conducted by Minnick & Associates and Elsa Bailey Consulting. The intended impact of this CRPA is to educate the public about the importance of the Caldera in securing the region's water supply and how climate changes could impact their lives. Further, aspects of the multidisciplinary science used in this research will be described with the goal of encouraging more young people from the region to choose STEM careers.
DATE: -
TEAM MEMBERS: William Michener Anthony Tiano
resource project Media and Technology
The Science Museum of Minnesota, in collaboration with six NSF-funded Science and Technology Centers (STCs) around the country, is developing several deliverables around the theme of the Anthropocene; that is, the idea that Earth has entered a new geologic epoch in which humanity is the dominant agent of global change. Deliverables include: (1) a 3,500 square-foot exhibit with object theater at the museum; (2) an Earth Buzz Web site that focuses on global change topics equivalent in design intent to the museum's popular current science Science Buzz website; (3) kiosks with Earth Buzz experiences installed in selected public venues; (4) Public programs with decision makers and opinion leaders on the implications of a human-dominated planet; and (5) youth programs and activities that engage them with the exhibit, web site, and careers in STEM. The exhibits and Web site will feature scientific visualizations and computational models adapted to public learning environments from research work being conducted by STCs and other academic research partners. First-person narrative videos of scientists and their research produced by Twin Cities Public Television now are on display in the Future Earth exhibit and also have been packaged into a half-hour program for broadcast statewide. The intended strategic impact on the field of informal STEM education is twofold: (1) explore how to accelerate the dissemination of scientific research to public audiences; (2) investigate ways science centers/museums can serve as forums for public policy dialogues.
DATE: -
TEAM MEMBERS: Patrick Hamilton Robert Garfinkle Paul Morin
resource project Media and Technology
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
DATE: -
TEAM MEMBERS: Rutgers University Carrie Ferraro
resource project Media and Technology
The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
DATE: -
TEAM MEMBERS: Lisa Gugenheim
resource project Media and Technology
This project will expand the functions and applications of FieldScope, a web-based science information portal currently supported by the National Geographic Society (NGS). The goal is to create a single, powerful infrastructure for Public Participation in Science Research (PPSR) projects that any organization can use to create their own project and support their own community of participants. FieldScope currently provides various tools and applications for use by its existing user base that includes the GLOBE project and the Chesapeake Bay monitoring system. The application enables users to contribute volunteered geographic data collection efforts and sharing information among both professional and amateur users. The project would develop and test an enhanced version of the existing FieldScope application. The project supports major programming development for a fully-functional web-based application that would significantly enhance the usability of the current application. Along with programming new features and capabilities, the project involves extensive evaluation of the new capabilities and involves three citizen-based organizations as testbeds.

The project will increase the capability of the existing system to handle large numbers of users and user groups and also increase the number and variety of tools available to any user; provide customization through the adaption of common APIs; and provide for expansion of computer space through use of virtual servers in a cloud computing environment thereby limiting the need for installed hardware. This approach would maximize storage and computing power by being able to call on resources when necessary and scaling back when demand decreases. The platform would include advanced visualization capabilities as part of a suite of analytic tools available to the user. Social networking applications would also be incorporated as a way of enabling communication among users of a particular site. The operation of the portal would be supported by the NGS and made available free of charge to any group of users applying for space. Nominal fees will be applied to large organizations requiring large computing space or additional features. User groups can request NGS supply custom features for the cost of development and deployment.

The evaluation of this project is extensive and focused on formative evaluation as a means to identify user preferences, from look and feel of the site to types of tools desired and types of uses expected. The formative evaluation would be conducted ahead of any commitment to programming and formatting of the features of the site. The project responds to a need expressed throughout the citizen science community for web-based applications that enable individuals to engage in a topic of interest, interact in various ways on such a site including the submission of data and information, analyze the information in concert with others and with working scientists in the field, and utilize state-of-the-art tools such as visualization as a way of making sense of the data being collected. There have been numerous proposals to create similar types of sites from various groups, each based on its own perceived needs and grounded in its own particular discipline or topic. This activity could serve this community more broadly and save similar groups the trouble and expense of creating sites from scratch.
DATE: -