Skip to main content

Community Repository Search Results

resource project Media and Technology
The University of California, Davis Tahoe Environmental Research Center (TERC), UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES), ECHO Lake Aquarium and Science Center (ECHO), UC Berkeley Lawrence Hall of Science (LHS), and the Institute for Learning Innovation (ILI) will study how 3-D visualizations can most effectively be used to improve general public understanding of freshwater lake ecosystems and Earth science processes through the use of immersive three-dimensional (3-D) visualizations of lake and watershed processes, supplemented by tabletop science activity stations. Two iconic lakes will be the focus of this study: Lake Tahoe in California and Nevada, and Lake Champlain in Vermont and New York, with products readily transferable to other freshwater systems and education venues. The PI will aggregate and share knowledge about how to effectively utilize 3-D technologies and scientific data to support learning from immersive 3-D visualizations, and how other hands-on materials can be combined to most effectively support visitor learning about physical, biological and geochemical processes and systems. The project will be structured to iteratively test, design, and implement 3-D visualizations in both concurrent and staggered development. The public will be engaged in the science behind water quality and ecosystem health; lake formation; lake foodwebs; weather and climate; and the role and impact of people on the ecosystem. A suite of publicly available learning resources will be designed and developed on freshwater ecosystems, including immersive 3-D visualizations; portable science stations with multimedia; a facilitator's guide for docent training; and a Developer's Manual to allow future informal science education venues. Project partners are organized into five teams: 1) Content Preparation and Review: prepare and author content including writing of storyboards, narratives, and activities; 2) 3-D Scientific Visualizations: create visualization products using spatial data; 3) Science Station: plan, design, and produce hands-on materials; 4) Website and Multimedia: produce a dissemination strategy for professional and public audiences; 4) Evaluation: conduct front-end, formative, and summative evaluation of both the 3-D visualizations and science activity stations. The summative evaluation will utilize a mixed methods approach, using both qualitative and quantitative methods, and will include focus groups, semi-structured interviews, web surveys, and in-depth interviews. Leveraging 3-D tools, high-quality visual displays, hands-on activities, and multimedia resources, university-based scientists will work collaboratively with informal science education professionals to extend the project's reach and impact to an audience of 400,000 visitors, including families, youth, school field trip groups, and tourists. The project will implement, evaluate, and disseminate knowledge of how 3-D visualizations and technologies can be designed and configured to effectively support visitor engagement and learning about physical, biological and geochemical processes and systems, and will evaluate how these technologies can be transferred more broadly to other informal science venues and schools for future career and workforce development in these critical STEM areas.
DATE: -
TEAM MEMBERS: Geoff Schladow Louise Kellogg Steven Yalowitz Sherry Hsi Phelan Fretz
resource evaluation Media and Technology
The National Science Foundation (NSF) awarded an Informal Science Education (ISE) grant, since renamed Advancing Informal STEM Learning (AISL) to a group of institutions led by two of the University of California, Davis’s centers: the Tahoe Environmental Research Center (TERC) and the W.M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES). The purpose of the evaluation was to gather feedback from museum professionals and the general public about the proposed 3D visualization project and its related components. Additionally, the study aimed to assess the current understanding
DATE:
TEAM MEMBERS: University of California, Davis Steven Yalowitz
resource project Media and Technology
The overarching purpose of the Climate Literacy Zoo Education Network is to develop and evaluate a new approach to climate change education that connects zoo visitors to polar animals currently endangered by climate change, leveraging the associative and affective pathways known to dominate decision-making. Utilizing a polar theme, the partnership brings together a strong multidisciplinary team that includes the Chicago Zoological Society of Brookfield, IL, leading a geographically distributed consortium of nine partners: Columbus Zoo & Aquarium, OH; Como Zoo & Conservatory, St. Paul, MN; Indianapolis Zoo, IN; Louisville Zoological Garden, KY; Oregon Zoo, Portland, OR; Pittsburgh Zoo & PPG Aquarium, PA; Roger Williams Park Zoo, Providence, RI; Toledo Zoological Gardens, OH, and the organization Polar Bears International. The partnership leadership includes the Learning Sciences Research Institute at the University of Illinois at Chicago, and the Earth System Science Center at Pennsylvania State University. The partnership is joined by experts in conservation psychology and an external advisory board. The primary stakeholders are the diverse 13 million annual visitors to the nine partner zoos. Additional stakeholders include zoo docents, interpreters and educators, as well as the partnership technical team in the fields of learning innovations, technological tools, research review and education practice. The core goals of the planning phase are to a) develop and extend the strong multidisciplinary partnership, b) conduct research needed to understand the preconceptions, attitudes, beliefs, and learning modes of zoo visitors regarding climate change; and c) identify and prototype innovative learning environments and tools. Internal and external evaluations will be conducted by Facet Innovations of Seattle, WA. Activities to achieve these goals include assessments and stakeholder workshops to inventory potential resources at zoos; surveys of zoo visitors to examine demographic, socioeconomic, and technology access parameters of zoo visitors and their existing opinions; and initial development and testing of participatory, experiential activities and technological tools to facilitate learning about the complex system principles underlying the climate system. The long-term vision centers on the development of a network of U.S. zoos, in partnership with climate change domain scientists, learning scientists, conservation psychologists, and other stakeholders, serving as a sustainable infrastructure to investigate strategies designed to foster changes in public attitudes, understandings, and behavior surrounding climate change.
DATE: -
TEAM MEMBERS: Chicago Zoological Society Lisa-Anne DeGregoria Kelly Alejandro Grajal Michael E. Mann Susan R. Goldman
resource evaluation Media and Technology
In October 2009, the Tennessee Aquarium began an ambitious program, Connecting Tennessee to the World Ocean (CTWO), funded by a grant from the National Oceanic and Atmospheric Administration. CTWO consists of several individual projects, all intended to increase the ocean literacy of Aquarium audiences and to promote their adoption of an ocean stewardship ethic. This formative evaluation report summarizes the extent to which the Aquarium has made progress toward these goals in the first year of the project and provides an information base for identifying opportunities to strengthen
DATE:
TEAM MEMBERS: Christopher Horne Tennessee Aquarium
resource project Media and Technology
In this full-scale research and development project, Oregon State University (OSU), Oregon Sea Grant (OSG) and the Hatfield Marine Science Center Visitors Center (HMSCVC) is designing, developing, implementing, researching and evaluating a cyberlaboratory in a museum setting. The cyberlaboratory will provide three earth and marine science learning experiences with research and evaluation interwoven with visitor experiences. The research platform will focus on: 1) a climate change exhibit that will enable research on identity, values and opinion; 2) a wave tank exhibit that will enable research on group dynamics and problem solving in interactive engineering challenges; and 3) remote sensing exhibits that will enable research on visitor interactions through the use of real data and simulations. This project will provide the informal science educaton community with a suite of tools to evaluate learning experiences with emerging technologies using an iterative process. The team will also make available to the informal science community their answers to the following research questions: For the climate change exhibit, "To what extent does customizing content delivery based on real-time visitor input promote learning?" For the wave tank exhibit, "To what extent do opportunities to reflect on and share experiences promote STEM reasoning processes at a build-and-test exhibit?" For the data-sensing exhibit, "Can visitors' abilities to explain or use visualizations be improved by shaping their visual searches of images?" Mixed-methods using interviews, surveys, behavioral instruments, and participant observations will be used to evaluate the overall program. Approximately 60-100 informal science education professionals will discuss and test the viability of the exhibit's evaluation tools. More than 150,000 visitors, along with community members and local middle and high school students, will have the opportunity to participate in the learning experiences at the HMSCVC. This work contributes to the fields of cyberlearning and informal science education. This project provides the informal science education field with important knowledge about learning, customized content delivery and evaluation tools that are used in informal science settings.
DATE: -
TEAM MEMBERS: Shawn Rowe Nancee Hunter Jenny East
resource project Media and Technology
Based on discoveries made from an active research grant, Gruber, colleagues, and students will develop multimedia deliverables that highlight the biofluorescence found in coral reefs. They include development of a multimedia exhibit containing interactive, inquiry-based modules and new videos developed off the Cayman Islands. These deliverables will share the beauty of coral reefs, the source of biofluorescence (fluorescent proteins), and the fundamental importance of coral reefs in shallow marine ecosystems. The STEM content of this project is drawn from the biological sciences, including specific topics such as marine biology, physiology, ecology, and conservation. The exhibit will reach diverse audiences at public aquaria and at the principal investigator's institution. Learning will be studied by an external evaluator through formative assessment. The new science discoveries and related STEM content about coral reef biofluorescence also will be communicated via a web site that enables access by informal learners online. This Communicating Research to Public Audiences project is based on research grant MCB-0920572: Isolation, characterization, and evolution of fluorescent proteins from Indo-Pacific and Caribbean marine organisms.
DATE: -
TEAM MEMBERS: David Gruber Vincent Pieribone Carrie Manfrino