Skip to main content

Community Repository Search Results

resource research Public Programs
The education research component of the Pulsar Search Collaboratory (PSC) seeks to determine how the PSC experience affects the science identity and STEM career intentions of its participants and how individual programmatic elements influence persistence. These questions are investigated by comparing pre-­‐survey and post-­‐survey results and by examining the participant’s interaction with the PSC online portal. This report d pre/posistilled t survey data that examines student participants’ STEM intentions along a number of dimensions: Science/Engineering Identity, Self-­‐Efficacy, Science
DATE:
resource evaluation Public Programs
This report presents findings from the evaluation of four Pulsar Search Collaboratory (PSC) activities: online training, use of website, capstone events at hub institutions, and the PSC summer camp.
DATE:
resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource project Public Programs
This project is a Smart and Connected Communities award. The community is part of Evanston, Illinois and is composed of the lead partners described below:


EvanSTEM which is a in-school/out of school time (OST) program to improve access and engagement for students in Evanston who have underperformed or been underrepresented in STEM.
McGaw YMCA which consists of 12,000 families serving 20,000 individuals and supporting technology and makerspace activities (MetaMedia) in a safe community atmosphere.
Office of Community Education Partnerships (OCEP) at Northwestern University which provides support for the university and community to collaborate on research, teaching, and service initiatives.


This partnership will develop a new approach to learning enagement through the STEAM (Science, Technology, Engineering, Arts, and Mathematics) interests of all young people in Evanston. This project is entitled Interests for All (I4All) and builds upon existing research results of the two Principal Investigators (PIs) and previous partnerships between the lead partners (EvanSTEM and MetaMedia had OCEP as a founding partner). I4All also brings together Evanston school districts, OST prividers, the city, and Evanston's Northwestern University as participants.

In particular the project builds on PI Pinkard's Cities of Learning project and co-PI Stevens' FUSE Studios project. Both of these projects have explicit goals to broaden participation in STEAM pursuits, a goal that is significantly advanced through I4All. In this project, I4All infrastructure will be evaluated using quantitative metrics that will tell the researchers whether and to what degree Evanston youth are finding and developing their STEAM interests and whether the I4All infrastructure supports a significantly more equitable distribution of opportunities to youth. The researchers will also conduct in depth qualitative case studies of youth interest development. These longitudinal studies will complement the quantitative metrics of participation and give measures that will be used in informing changes in I4All as part of the PIs Design Based Implementation Research approach. The artifacts produced in I4All include FUSE studio projects, software infrastructure to guide the students through OST and in-school activities and to provide to the students actionable information as to logistics for participation in I4All activities, and data that will be available to all stakeholders to evaluate the effectiveness of I4All. Additionally, this research has the potential to provide for scaling this model to different communities, leveraging the OST network in one community to begin to offer professional development more widely throughout the school districts and as an exemplar for other districts. These research results could also affect strategies and policies created by local school officials and community organizations regarding how to work together to create local learning environments to create an ecosystem where formal and informal learning spaces support and reinforce STEAM knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Nichole Pinkard Reed Stevens
resource evaluation Media and Technology
The independent evaluation firm, Knight Williams, Inc., developed a two-part post-program survey to gather information about the Year 1 SciGirls CONNECT2 outreach programs conducted by 14 partner organizations. The evaluation aimed for one educator from each organization to complete Part 1 of the survey, which consisted of program reporting questions. In all, one educator from 13 partner organizations completed Part 1, for a response rate of 93%. Part 2 of the survey asked for program reflections, with a focus on perceived program goals, impacts, highlights, and challenges. Given the
DATE:
resource evaluation Public Programs
The independent evaluation firm Knight Williams, Inc. administered an online survey to educators from 16 SciGirls CONNECT2 partner organizations to gather information about their anticipated use of, reflections on, and recommendations relating to the draft updated SciGirls Strategies. The evaluation aimed for two educators from each partner organization – specifically the program leader and one educator who was familiar with the original SciGirls Seven strategies – to complete the survey about the draft updated strategies after they were shared by TPT in March 2018 via an online webinar and a
DATE:
resource evaluation Media and Technology
The independent evaluation firm, Knight Williams, Inc., administered an online survey and conducted follow-up interviews with educators from 14 SciGirls CONNECT2 partner organizations to gather information about their use of, reflections on, and recommendations relating to the SciGirls Seven strategies. The evaluation aimed for two educators from each partner organization – specifically the program leader and one educator who was familiar with the SciGirls Seven – to share reflections on the strategies after they completed their Year 1 programs. In all, 24 educators from 13 partners completed
DATE:
resource project Public Programs
This application requests support to enable a team of experienced science educators and biomedical and behavioral health network scientists to develop and implement the Worlds of Connections curriculum. Most middle school students are familiar with patient care-related health careers (e.g., nurses, dentists, surgeons), but few know about emerging careers in network science that can be leveraged to improve population health. This innovative and research-based science program is strategically designed to increase awareness of, understanding of, and interest in the important role of network science for health. This project will design learning activities that incite interest in network science applications to biomedical and public health research. The long- term goal is to enhance the diversity of the bio-behavioral and biomedical workforce by increasing interest in network science among members of underrepresented minority communities and to promote public understanding of the benefits of NIH-funded research for public health. The goal of this application is to identify and create resources that will overcome barriers to network science uptake among underserved minority middle school youth. The central hypothesis is that the technology-rich field of network science will attract segments of today’s youth who remain uninterested in conventional, bio-centric health fields. Project activities are designed to improve understanding of how informal STEM experiences with network science in health research can increase STEM identities, STEM possible selves, and STEM career aspirations among youth from groups historically underrepresented in STEM disciplines at the center of health science research (Aim 1) and create emerging media resources via augmented reality technologies to stimulate broad interest in and understanding of the role of network science in biomedical and public health research (Aim 2). A team led by University of Nebraska-Lincoln sociologists will partner with the University of Nebraska at Omaha; state museums; centers for math, science, and emerging media arts; NIH-funded network scientists; educators; community learning centers at local public schools; learning researchers; undergraduates; software professionals; artists; augmented reality professionals; storytellers; and evaluation experts to accomplish these goals and ensure out of school learning will reinforce Next Generation Science Standards. The Worlds of Connections project is expected to impact 35,250 youth and 20,570 educators in Lincoln and Omaha, Nebraska by: adding network science modules to ongoing 6th-8th-grade afterschool STEM clubs in community learning centers; adding network science for health resources to a summer graduate course on “activating youth STEM identities” for sixth to twelfth grade STEM teachers; connecting teachers with local network scientists; creating free, downloadable, high-quality emerging media arts-enhanced stories; and publishing peer-reviewed research on the potential of network science to attract youth to health careers. Coupled with the dissemination plan, the project design and activities will be replicable, allowing this project to serve as a model to guide other projects in STEM communication.

PUBLIC HEALTH RELEVANCE:
The lack of public understanding about the role of network science in the basic biological and social health sciences limits career options and support for historically underrepresented groups whose diverse viewpoints and questions will be needed to solve the next generation of health problems. The Worlds of Connections project will combine network science, social science, learning research, biology, computer science, mathematics, emerging media arts, and informal science learning expertise to build a series of monitored and evaluated dissemination experiments for middle school science education in high poverty schools. Broad dissemination of the curriculum and project impacts will employ virtual reality technologies to bring new and younger publics into health-related STEM careers.
DATE: -
TEAM MEMBERS: Julia Mcquilan Grace Stallworth
resource project Public Programs
The goals of this proposal are: 1) to provide opportunities for underrepresented students to consider careers in basic or clinical research by exciting them through an educational Citizen Science research project; 2) to provide teachers with professional development in science content and teaching skills using research projects as the infrastructure; and 3) to improve the environments and behaviors in early childcare and education settings related to healthy lifestyles across the state through HSTA students Citizen Science projects. The project will complement or enhance the training of a workforce to meet the nation’s biomedical, behavioral and clinical research needs. It will encourage interactive partnerships between biomedical and clinical researchers,in-service teachers and early childcare and education facilities to prevent obesity.

Specific Aim I is the Biomedical Summer Institute for Teachers led by university faculty. This component is a one week university based component. The focus is to enhance teacher knowledge of biomedical characteristics and problems associated with childhood obesity, simple statistics, ethics and HIPAA compliance, and the principles of Citizen Science using Community Based Participatory Research (CBPR). The teachers, together with the university faculty and staff, will develop the curriculum and activities for Specific Aim II.

Specific Aim II is the Biomedical Summer Institute for Students, led by HSTA teachers guided by university faculty. This experience will expose 11th grade HSTA students to the biomedical characteristics and problems associated with obesity with a focus on early childhood. Students will be trained on Key 2 a Healthy Start, which aims to improve nutrition and physical activity best practices, policies and environments in West Virginia’s early child care and education programs. The students will develop a meaningful project related to childhood obesity and an aspect of its prevention so that the summer institute bridges seamlessly into Specific Aim III.

Specific Aim III is the Community Based After School Club Experiences. The students and teachers from the summer experience will lead additional interested 9th–12th grade students in their clubs to examine their communities and to engage community members in conducting public health intervention research in topics surrounding childhood obesity prevention through Citizen Science. Students and teachers will work collaboratively with the Key 2 a Healthy Start team on community projects that will be focused on providing on-going technical assistance that will ultimately move the early childcare settings towards achieving best practices related to nutrition and physical activity in young children.
DATE: -
TEAM MEMBERS: Ann Chester
resource project Public Programs
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:


develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.


This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.

A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.

The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE: -
TEAM MEMBERS: Adam Marcus Theresa Gillespie
resource project Public Programs
This project specifically addresses the SMRB’s imperative that “NIH’s pre-college STEM activities need a rejuvenated integrated focus on biomedical workforce preparedness with special considerations for under-represented minorities.”

Approximately one-third of CityLab’s participants are under-represented minority (URM) students, but we now have a unique opportunity to build a program that will reach many URM students and position them for undergraduate STEM success. We have partnered with urban squash education organizations in Boston (SquashBusters) and New York (CitySquash and StreetSquash) that recruit URM/low SES students to participate in after-school squash training and academic enrichment programs. We have also partnered with the Squash + Education Alliance (previously named the National Urban Squash and Education Association) to disseminate the new program—first from Boston to New York and later through its national network of affiliated squash education programs.

In order to bring this project to fruition, Boston University is joining forces with Fordham University in New York. Fordham is home to CitySquash so these organizations provide an ideal base for the New York activities. The proposed project will enable us to demonstrate feasibility and replicability within the 5-year scope of this grant. Our shared vision is to develop a national model for informal precollege biomedical science education that can be infused into a myriad of similar athletic/academic enrichment programs.

The squash education movement for urban youth has been highly successful in enrolling program graduates in college. Since the academic offerings of the squash education programs focus on English Language Arts and Mathematics, their students struggle with science and rarely recognize the tremendous opportunities for long- term employment in STEM fields.

This project will bring CityLab’s resources to local squash programs in a coordinated and sustained engagement to introduce students to STEM, specifically the biomedical sciences. Together with the urban squash centers, we will build upon the hands-on life science experiences developed and widely disseminated by CityLab to create engaging laboratory-based experiences involving athletics and physiology.

The specific aims of the proposed project are:


To develop, implement, and evaluate a new partnership model for recruiting URM/low SES students and inspiring them to pursue careers in STEM; and
To examine changes in the science learner identities (SLI) of the students who participate in this program and establish this metric as a marker for continued engagement in STEM.


With the involvement of the two urban research universities, three local squash education programs, and SEA, we see this new SEPA initiative as a unique way to pilot, refine, and disseminate an after-school/informal science education program that can have a significant impact on the nation’s production of talented STEM graduates from URM/low SES backgrounds.
DATE: -
TEAM MEMBERS: Carl Franzblau Donald DeRosa Carla Romney
resource project Public Programs
Research that seeks to understand classroom interactions often relies on video recordings of classrooms so that researchers can document and analyze what teachers and students are doing in the learning environment. When studies are large scale, this analysis is challenging in part because it is time-consuming to review and code large quantities of video. For example, hundreds of hours of videotaped interaction between students working in an after-school program for advancing computational thinking and engineering learning for Latino/a students. This project is exploring the use of computer-assisted methods for video analysis to support manual coding by researchers. The project is adapting procedures used for computer-aided diagnosis systems for medical systems. The computer-assisted process creates summaries that can then be used by researchers to identify critical events and to describe patterns of activities in the classroom such as students talking to each other or writing during a small group project. Creating the summaries requires analyzing video for facial recognition, motion, color and object identification. The project will investigate what parts of student participation and teaching can be analyzed using computer-assisted video analysis. This project is supported by NSF's EHR Core Research (ECR) program, the STEM+C program and the AISL program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. The project is funded by the STEM+Computing program, which seeks to address emerging challenges in computational STEM areas through the applied integration of computational thinking and computing activities within disciplinary STEM teaching and learning in early childhood education through high school (preK-12). As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The video analysis systems will provide video summarizations for specific activities which will allow researchers to use these results to quantify student participation and document teaching practices that support student learning. This will support the analysis of large volumes of video data that are often time-consuming to analyze. The video analysis system will identify objects in the scene and then use measures of distances between objects and other tracking methods to code different activities (e.g., typing, talking, interaction between the student and a facilitator). The two groups of research questions are as follows. (1) How can human review of digital videos benefit from computer-assisted video analysis methods? Which aspects of video summarization (e.g., detected activities) can help reduce the time it takes to review the videos? Beyond audio analytics, what types of future research in video summarization can help reduce the time that it takes to review videos? (2) How can we quantify student participation using computer-assisted video analysis methods? What aspects of student participation can be accurately measures by computer-assisted video analysis methods? The video to be used for this study is drawn from a project focused on engineering and computational thinking learning for Latino/a students in an after-school setting. Hundreds of hours of video are available to be reviewed and analyzed to design and refine the system. The resulting coding will also help document patterns of engagement in the learning environment.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Marios Pattichis Sylvia Celedon-Pattichis Carlos LopezLeiva