Skip to main content

Community Repository Search Results

resource project Public Programs
The University of Montana spectrUM Discovery Area will implement “Making Across Montana” —a project to engage K–12 students and teachers in rural and tribal communities with making and tinkering. In collaboration with K–12 education partners in the rural Bitterroot Valley and on the Flathead Indian Reservation, the museum will develop a mobile making and tinkering exhibition and education program. The exhibition will be able to travel to K–12 schools statewide. The project team will develop a K–12 teacher professional development workshop, along with accompanying curriculum resources and supplies. The traveling program and related materials will build schools’ capacity to incorporate making and tinkering—and informal STEM experiences more broadly—into their teaching.
DATE: -
TEAM MEMBERS: Jessie Herbert-Meny
resource project Professional Development, Conferences, and Networks
The Frank Lloyd Wright Home and Studio will expand its professional development program for educators in Chicago Public Schools and surrounding suburbs with low-income populations. The Teaching by Design program integrates design-based inquiry and problem-solving into K-12 curricula. It connects Wright's design philosophy to contemporary issues in STEAM subjects. Following a multi-year pilot, the trust will bring the project to scale by delivering 12 professional development seminars, developing 100 new lesson plans, enhancing the program's online platform, evaluating the project's short- and long-term impact, and cultivating a sustainable Teaching by Design learning community. The seminars will provide educators with a fully immersive artmaking and design experience that can be replicated in the classroom and connected to cross-curricular themes and learning standards. The project aims to reach 90 educators in at least 40 schools, 9,000 students, and an estimated 3,000 website users.
DATE: -
TEAM MEMBERS: Katherine Coogan
resource project Public Programs
The Aldrich Contemporary Art Museum will amplify its partnership with Hart Magnet School, a Title 1 elementary school in urban Stamford, Connecticut, by increasing exposure and access to the arts for first-fifth graders, their families, and educators. A new program model, leveraging the museum's artist exhibitions, will focus on technology and an inquiry-based approach to science. Students, educators, and families will be encouraged to see and think in new ways through on-site STEAM tours at the museum, artist-led workshops at Hart, teacher professional development, and afterschool family activities. Outside evaluators will work with the project team to develop goals and associated metrics to measure how the model of museum-school partnership can enhance student achievement, engage families more deeply in their child's school experience and community, and contribute to teacher professional development. The evaluator will also train museum staff on best practices for program assessment.
DATE: -
TEAM MEMBERS: Namulen Bayarsaihan
resource project Media and Technology
The Harvard Museums of Science and Culture will improve the ability of middle school teachers to use museum-based digital resources to support classroom instruction aligned with state and national science standards. Working with advisory teachers from five collaborating school districts, the museum will co-create classroom activities, based on digital resources from its collections, along with associated teacher professional development programs at three sites across urban and rural Massachusetts. The project will provide schools with access to classroom-ready resources that successfully support student learning. Teachers will learn how to use these materials, integrate them into their teaching, and enhance their skills to teach science content and practice. External evaluators will assess the project's effectiveness by measuring teacher implementation of the digital resources in the classroom, requests for information and assistance, and changes in teachers' confidence and comfort levels.
DATE: -
TEAM MEMBERS: Wendy Derjue-Holzer
resource project Public Programs
In partnership with early childhood service providers and elementary school systems, the Children's Museum of the Lowcountry will expand the reach of its programming to share its hands-on, play-based approach to STEM education with targeted children and educators. The museum will create a Power of Play curriculum with lesson plans that reflect best practices and focus on play-based activities to teach STEM concepts tied to grade level and state standards. The museum will train and support 40 teachers and educators from ten Head Start/First Steps early childhood centers and ten Title I elementary schools, and provide them with free Pop Up Tinker Shop (a museum on wheels) outreach visits. The trainings will build teacher confidence, promote best practices for play-based learning, support a community of practice, and enhance young learners' engagement, fascination, and attitude towards STEM. The Power of Play Curriculum will be published as a bound resource and shared with other children's museums and service providers.
DATE: -
TEAM MEMBERS: Starr Jordan
resource project Public Programs
The Massachusetts Audubon Society will develop, pilot, and implement an evaluation framework for nature-based STEM programming that serves K-12 students visiting its network of nature centers and museums. Working with an external consultant, the society will develop the framework comprised of a logic model and theory of change for fieldtrips, and develop a toolkit of evaluation data collection methodology suitable to various child development stages. The project team will design and conduct three professional development training seminars to help Massachusetts Audubon school educators develop a working understanding of the new evaluation framework for school programs and gain the skills necessary to support protocol implementation. This project will result in the development and adoption of a universal protocol to guide the collection, management, and reporting of education program evaluation data across the 19 nature centers and museums in the Massachusetts Audubon system.
DATE: -
TEAM MEMBERS: Kris Scopinich
resource evaluation Public Programs
This report presents highlights from a Fall 2020 evaluation conducted with 69 STEAM teachers from across the U.S., all of whom are part of the National Air and Space Museum's Teacher Innovator Institute (TII). Due to the impact of the COVID-19 pandemic on classrooms and the museum's teacher PD program, the evaluation in Fall 2020 focused on understanding the conditions, adaptations, challenges, and success stories of this population of teachers from across the country. The findings in this report provide insight into the variations in teaching conditions (depending on geography and urbanity
DATE:
TEAM MEMBERS: Jessica Sickler Michelle Lentzner Kirsten Buchner Shannon Baldioli
resource project Professional Development, Conferences, and Networks
This CAREER proposal focuses on the development of teachers' identities, which are operationalized as beliefs and practices, behaviors, and pedagogical knowledge. The PI uses a qualitative approach, occurring over two phases, to investigate the impact of formal-informal collaborations on identity development over time. The study is grounded in an ecological theoretical approach that incorporates a view of informal learning settings as learner-driven and unique in providing opportunities for interaction with objects during meaning-making experiences among groups of learners. The longitudinal research design includes collection of an array of data, including observations of teaching and learning activities, interviews, survey responses, and archival documents such as student work and videos of classroom experiences. The PI uses a narrative analysis and a grounded theoretical approach to generate themes about beliefs and practices around behaviors and pedagogical knowledge informed by informal science education experiences.

Research findings and related educational activities inform the field's understanding of best practices of integrating informal science activities into science teacher education, including determining appropriate kinds of support for STEM teachers who learn to teach in informal learning environments (ILE). The PI is integrating research findings in the revision of existing courses and the development of new courses and experiences for both new and experienced teachers. The project addresses the need for empirical evidence of impacts of ILE experiences on professional development, and will build capacity of informal science institution and university professionals to provide effective teacher education experiences and new teacher support.
DATE: -
TEAM MEMBERS: Jennifer Adams
resource project Public Programs
The goal of the National Science Foundation?s Research Coordination Network (RCN) program is to advance a field or create new directions in research or education by supporting groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, geographic and international boundaries. This RCN will bring together scholars and practitioners working at the intersection of equity and interdisciplinary making in STEM education. Making is a culture that emphasizes interest-driven learning by doing within an informal, peer-led and creative social environment. Hundreds of maker spaces and maker-oriented classroom pedagogies have developed across the country. Maker spaces often include digital technologies such as computer design, 3-D printers, and laser cutters, but may also include traditional crafts or a variety of artist-driven creations. The driving purpose of the project is to collectively broaden STEM-focused maker participation in the United States through pursuing common research questions, sharing resources, and incubating emergent inquiry and knowledge across multiple working sites of practice. The network aims to build capacity for research and knowledge, building in consequential and far-reaching mechanisms to leverage combined efforts of a core group of scholars, practitioners, and an extended network of formal and informal education partners in urban and rural sites serving people from groups underrepresented in STEM. Maker learning spaces can be particularly fruitful spaces for STEM learning toward equity because they foster interest-driven, collective, and community-oriented learning in making for social and community change. The network will be led by a team of multi-institutional and multi-disciplinary researchers from different geographic regions of the United States and guided by a steering committee of prominent researchers and practitioners in making and equity will convene to facilitate network activities.

Equitable processes are rooted in a commitment to understand and build on the skills, practices, values, and knowledge of communities marginalized in STEM. The research network aims to fill in gaps in current understandings about making and equity, including the many ways different projects define equity and STEM in making. The project will survey the existing research terrain to develop a dynamic and cohesive understanding of making that connects to learners' STEM ideas, communities, and historical ways of making. Additionally, the network will collaboratively develop central research questions for network partners. The network will create a repository for ethical and promising practices in community-based research and aggregate data across sites, among other activities. The network will support collaboration across a multiplicity of making spaces, research institutions, and community organizations throughout the country to share data, methodologies, ways of connecting to local communities and approaches to robust integration of STEM skills and practices. Project impacts will include new research partnerships, a dissemination hub for research related to making and equity, professional development for researchers and practitioners, and leveraging collective research findings about making values and practices to improve approaches to STEM-rich making integration in informal learning environments. The project is funded by NSF's Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of settings. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Maria Olivares Eli Tucker-Raymond Edna Tan Jill Castek Cynthia Graville
resource project Public Programs
For nearly 20 years, the UAB Center for Community OutReach Development (CORD) has conducted SEPA funded research that has greatly enhanced the number of minority students entering the pipeline to college and biomedical careers, e.g., nearly all of CORD’s Summer Research Interns since 1998 (>300) have completed/are completing college and most of them are continuing on to graduate biomedical research and/or clinical training and careers. CORD’s programs that focused on high and middle school students have drawn many minority students into biomedical careers, but a low percentage of minority students benefit from these programs because far too many are already left behind academically in grades 4-6, due, at least in part, to a significant drop in science grades between grades 4 and 6, a drop from which most students never recover. A major contributor to this effect is that most grade 4-6 teachers in predominantly minority schools lack significant formal training in science and often are not fully aware of the great opportunities offered by biomedical careers.

In SEEC II, CORD will deliver intensive inquiry-based science training to grade 4-6 teachers, providing them with science content and hands-on science experiences that will afford their student both content and skills that will make them excited about, and competitive for, the advanced courses needed to move into biomedical research careers. SEEC II will also link teachers together across the elementary/middle school divide and bring the teachers together with administrators and parents, who will experience firsthand the excitement that inquiry learning brings and the significant advancement it provides in science and in reading and math. At monthly meetings and large annual celebrations, the parents, teachers and administrators will learn about the opportunities that biomedical careers can provide for the student who is well prepared. They will also consider the financial and educational steps required to ensure that students have the ability to reach these professions.

SEEC II will also expand CORD’s middle school LabWorks and Summer Science Camps to include grade 4-5 students and provide the teachers with professional learning in informal settings. During summer training, in small groups, the teachers will expand one of the inquiry-based science activities that they complete in the training, and they will use these in their classrooms and communicate with the others in their group to perfect these experiences in the school year. Finally, the teachers and grade 4-5 students will develop science and engineering fair-type research projects with which they will compete both on the school level and at the annual meeting. Thus, the students will share with their parents the excitement that science brings. The Intellectual Merit of SEEC II will be to test a model to enhance grade 4-6 teacher development and vertical alignment, providing science content, exposure to biomedical scientists and training in participatory science experiments, thus positioning teachers to succeed. The Broader Impacts will include the translation and testing of a science education model to assist minority students to avoid the middle school plunge and reach biomedical careers.
DATE: -
TEAM MEMBERS: J. Michael Weiss
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
This application requests support to enable a team of experienced science educators and biomedical and behavioral health network scientists to develop and implement the Worlds of Connections curriculum. Most middle school students are familiar with patient care-related health careers (e.g., nurses, dentists, surgeons), but few know about emerging careers in network science that can be leveraged to improve population health. This innovative and research-based science program is strategically designed to increase awareness of, understanding of, and interest in the important role of network science for health. This project will design learning activities that incite interest in network science applications to biomedical and public health research. The long- term goal is to enhance the diversity of the bio-behavioral and biomedical workforce by increasing interest in network science among members of underrepresented minority communities and to promote public understanding of the benefits of NIH-funded research for public health. The goal of this application is to identify and create resources that will overcome barriers to network science uptake among underserved minority middle school youth. The central hypothesis is that the technology-rich field of network science will attract segments of today’s youth who remain uninterested in conventional, bio-centric health fields. Project activities are designed to improve understanding of how informal STEM experiences with network science in health research can increase STEM identities, STEM possible selves, and STEM career aspirations among youth from groups historically underrepresented in STEM disciplines at the center of health science research (Aim 1) and create emerging media resources via augmented reality technologies to stimulate broad interest in and understanding of the role of network science in biomedical and public health research (Aim 2). A team led by University of Nebraska-Lincoln sociologists will partner with the University of Nebraska at Omaha; state museums; centers for math, science, and emerging media arts; NIH-funded network scientists; educators; community learning centers at local public schools; learning researchers; undergraduates; software professionals; artists; augmented reality professionals; storytellers; and evaluation experts to accomplish these goals and ensure out of school learning will reinforce Next Generation Science Standards. The Worlds of Connections project is expected to impact 35,250 youth and 20,570 educators in Lincoln and Omaha, Nebraska by: adding network science modules to ongoing 6th-8th-grade afterschool STEM clubs in community learning centers; adding network science for health resources to a summer graduate course on “activating youth STEM identities” for sixth to twelfth grade STEM teachers; connecting teachers with local network scientists; creating free, downloadable, high-quality emerging media arts-enhanced stories; and publishing peer-reviewed research on the potential of network science to attract youth to health careers. Coupled with the dissemination plan, the project design and activities will be replicable, allowing this project to serve as a model to guide other projects in STEM communication.

PUBLIC HEALTH RELEVANCE:
The lack of public understanding about the role of network science in the basic biological and social health sciences limits career options and support for historically underrepresented groups whose diverse viewpoints and questions will be needed to solve the next generation of health problems. The Worlds of Connections project will combine network science, social science, learning research, biology, computer science, mathematics, emerging media arts, and informal science learning expertise to build a series of monitored and evaluated dissemination experiments for middle school science education in high poverty schools. Broad dissemination of the curriculum and project impacts will employ virtual reality technologies to bring new and younger publics into health-related STEM careers.
DATE: -
TEAM MEMBERS: Julia Mcquilan Grace Stallworth