Skip to main content

Community Repository Search Results

resource project Public Programs
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
DATE: -
resource project Public Programs
Through the Scientists for Tomorrow pathways project, The Science Institute at Columbia College in Chicago will test a model for preparing non-science major, pre-service elementary school teachers to deliver three ten-week informal science education modules to youth in after school programs. The initiative will bring engineering concepts, environmental science, and technology to approximately 240 urban Chicago youth (ages 10-14 years old) and their families. The Science Institute will partner with eight minority serving community based organizations and the Museum of Science and Industry, the Field Museum, and the Garfield Park Conservatory Alliance to develop and implement all aspects of the program. The goals of the program are two-fold. First, the project will develop and implement a high-quality STEM based afterschool program for under-represented youth in STEM. Second, the professional development and experience implementing the curriculum with youth in the local communities and within informal science education (ISE) institutions will extend and enrich the pre-service teachers\' STEM content and pedagogical knowledge base and better prepare them to teach science in formal and informal settings. Thirty teachers will receive specialized professional development through a seminar, course, and other support mechanisms in order to best support the implementation of the modules, while building their STEM content expertise, confidence, and pedagogical knowledge. Each module has a different STEM content focus: alternative energy (fall), the physics and mathematics of sound and music (winter), and environmental science (spring). At the end of each module, a culminating youth-led presentation will be held at one of the partnering Chicago museums. Youth will be encouraged to participate in all three modules. The formative evaluation will be conducted by the Co-Principal Investigators. Pre and post assessments, artifact reviews, and interviews will be used for the summative evaluation, which will be conducted by an external evaluator at the Illinois Institute of Technology. The project deliverables include: (a) a teacher training program, (b) an after school curriculum, and (c) media tools - DVDs, website. Over the grant period, the project intends to reach 120 youth each year, over 100 family and community members, and 30 teachers. The larger impact of this project will be the development of a scalable model for bringing relevant STEM content and experiences to youth, their families, and non-science major pre-service teachers. As a result of this project, a cadre of pre-service teachers will have: (a) increased their STEM content knowledge, (b) gained experience presenting STEM content in informal settings, (c) learned effective approaches to deliver hands-on STEM content, and (d) learned to use museum and other ISE resources in their teaching. In fact, after the grant period nearly half of the teachers will continue to work at the centers as part-time instructors, fully supported by the partnering community centers.
DATE: -
TEAM MEMBERS: Constantin Rasinariu Marelo Caplan Virginia Lehmkuhl-Dakhwe
resource project Public Programs
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
DATE: -
TEAM MEMBERS: Tara Chklovski Toby Cumberbatch Shrikanth Narayanan Doe Mayer Jed Dannenbaum Harouna Ba Molly Porter Preeti Gupta Sylvia Perez
resource project Public Programs
The Museum of Aviation: STEM-ulating Georgia's Future Workforce Through Outreach project will build partnerships between the Museum of Aviation, STARBASE, six Georgia school districts, NASA, and volunteer mentors that promote STEM literacy, awareness of NASA's mission, and encourage the pursuit of STEM careers. This goal will be achieved through meeting the following objectives: -Promote lifelong learning by students, educators, and families, using NASA-themed STEM and missions via six outreach programs serving 10,750 participants (including 9,000 students, 1,600 parents, and 150 teachers).
-Improve the understanding of NASA's missions, contributions to STEM disciplines and careers by students and faculty in grades pre K-8 by at least 35%. To accomplish the objectives, 6 STEM-based outreach programs will be provided to 12 school districts and will serve students, parents, and teachers. -ACE on the Go - STEM Modules use hands-on interactive activities for 2nd-5th graders -Family STEM Night - provides 2nd-5th graders and their families an opportunity to partake in 15 or more hands-on, interactive experiments that demonstrate STEM principles. -Aviation Outreach - introduces 6th-8th graders to aviation, and to STEM related careers. -STEM Afterschool - 6th-8th graders will learn about forces and motion and how forces make flight possible. -STARBASE 2.0 Afterschool STEM Mentoring Club consists of two components - a STEM Academy and a STEM Mentoring Afterschool Program both for underserved and at-risk youth in grades 6-8. -Teacher Training – STEM Workshops for teachers through the Georgia NASA RERC. This project will help to strengthen Georgia's future workforce by targeting students traditionally underserved and underrepresented in communities and in STEM fields. It will help attract and retain students in STEM disciplines by engaging students in STEM education and exposing them to STEM careers, and connect students, teachers, and families to NASA's mission by building strategic partnerships with formal education providers. The project will also help to strengthen the nation's and NASA's future workforce, attract and retain students in STEM disciplines, and engage Americans in NASA's mission.
DATE: -
TEAM MEMBERS: Patrick Bartness
resource project Media and Technology
Engineering MISSION: Engineering for Middle School Science, Inspiration and Opportunity is a project that introduces the engineering design process and the field of engineering to upper elementary and middle school students. Led by the Museum of Science, Boston in partnership with the Massachusetts Space Grant Consortium and the Goddard Space Flight Center (MD), and in conjunction with the California Afterschool Network and Audience Viewpoints (VA), this collaboration introduces engineering through the lens of our quest for knowledge about the Earth, solar system, and universe as embodied in NASA missions of exploration and discovery.

The project’s goals are to increase awareness of the field of engineering, the engineering design process, and the work of engineers; to inspire the next generation of engineers through the exciting challenges of exploring the universe; and to offer professional development opportunities for informal and formal educators in support of this effort. Our evaluation informed decisions regarding the design, development, and effectiveness of this project’s efforts. Through this undertaking, the Museum of Science, in collaboration with its partners, significantly enhanced and promoted public awareness of professional opportunities in the STEM fields.

There were four resources created through this partnership: From Dream to Discovery: Inside NASA, an engineering-themed planetarium show featuring NASA’s missions to explore Earth and space; a collection of short-duration, space-engineering-themed visual assets for use in museums and schools; aeronautical and aerospace-themed out-of-school time activities from the Museum’s Engineering Adventures program; and two workshops for informal and formal educators. The planetarium show, visual assets, and out-of-school-time activities are all currently available for distribution.
DATE: -
TEAM MEMBERS: Paul Fontaine
resource project Public Programs
This is a Broad Implementation proposal. Our goal is to create a vibrant, sustained community of practice around the established Café Scientifique New Mexico model for engaging high school teens in science, technology, engineering and math; scale-up will be accomplished via a national network of committed partners. The adult Cafe Scientifique model for engaging citizens in science has proven very effective and has been implemented widely. The interaction in a social setting with a scientist-presenter around a hot science topic is the key to the model’s success. With ISE funding, the model has been adapted by Science Education Solutions for the high school teen audience. Cafe Scientifique New Mexico, now starting its fifth year, has had documented success in providing teens with increased STEM literacy and a more realistic picture of scientists as real people leading interesting lives. Teens come to better understand the nature of science and are more likely to see the relevance of science to their lives. Scientists express strong satisfaction with the nature of our coaching and the resulting quality of their science communication. The program has been continually evaluated and improved, and is now ready for broad implementation. Intellectual Merit: Teenagers are the adult citizens and workforce of tomorrow. Teens are reaching a critical life juncture and are making choices that affect their future life style, life-long learning behaviors, and careers. Yet they are increasingly dropping out of the STEM pipeline in school. Even teens interested in STEM often know little about science and engineering careers and the nature of scientific research. Teen Cafés can play an important role in addressing these challenges. We have two major objectives: 1. Implement the Café Scientifique model of Teen Cafés in a national network of sites committed to adopting and adapting the program and validating its impacts with diverse audiences; and 2. Create a vibrant and sustainable community of practice comprised of ISE and STEM professionals interested in engaging teens in STEM through Teen Cafés. We have formed a core network of six initial partners: Southern Illinois University Edwardsville, Center for STEM Research, Education, and Outreach; The Florida Teen SciCafé Partnership; North Carolina Museum of Natural Sciences, Raleigh; Science Discovery, University of Colorado; The Pacific Science Center in Seattle; and The Missouri AfterSchool Network (MASN) – Project LIFTOF. We will add two more core partners in Year 3. The core partners will join the Teen Cafe Network in a staged fashion in years 1 - 3. Each will reach sustainability over a three-year funding period. Each node has a local area network of partners consisting of organizations that will host local Cafes; scientific organizations with potential presenters; schools and other organizations for recruiting teens; and entities capable of contributing to financial sustainability. The network will provide a structure for a dynamic, growing, and sustainable community of practice to implement the Teen Café model, in which high school teens will gain skills in scientific discourse, thought, and exploration. STEM professionals will gain improved skills for communicating with public audiences and a new perspective on their research from a broader societal perspective. ISE professionals will gain capacity to adapt, implement, test, and further disseminate the Teen Café model and increased capability for preparing STEM experts to communicate effectively with teen audiences, along with tools, resources, and expertise to help them do so. Science Education Solutions will manage the project and provide the resources to support the community of practice, while continuing Cafe Scientifique New Mexico as a ninth network node. We will stimulate intensive ongoing communication of lessons learned across the network as partners start up their Cafe programs; external observers will be able to watch the program unfold. Broader Impacts: We will build capacity for serving teens and effective communication of science in the broad ISE and STEM communities by encouraging and nurturing others wishing to start a Cafe program and join the network. We have partnered with 10 large science and science education organizations, each with its own extensive network, which will allow us to further propagate the Teen Cafe Network. They are: National Ecological Observatory Network (NEON). Nanoscale Informal Science Education Network (NISE Net), The American Institute of Physics (AIP), Science Cafés.org (to include NOVA), Science Festival Alliance, Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), Informalscience.org, Project Liftoff: Elevating Science Afterschool, ITEST Learning Resource Center, and The Center for Multiscale Modeling of Atmospheric Processes (CMMAP). Each partner will also target underserved and diverse teen audiences for their programs.
DATE: -
TEAM MEMBERS: Michelle Hall Michael Mayhew
resource research Public Programs
Supervising youth workers is a challenging, demanding job in a complex field. Too frequently youth workers get mired in reacting to the everyday crises that dominate their work, finding it difficult to rise above the daily demands to reach a place where reflection can help guide their work. Strategies based in action research can empower youth work supervisors to invest in their own growth and in the continuous improvement of their programs.
DATE:
TEAM MEMBERS: Margo Herman
resource research Public Programs
Exemplary career programming overcomes the obstacles to engaging older youth and shows them how to find the "next rung on the ladder." This article draws from several disciplines to integrate what is and is not known about engaging youth in career programming during out-of-school time.
DATE:
TEAM MEMBERS: Kathryn Hynes Kaylin Greene Nicole Constance
resource research Public Programs
A survey of out-of-school time administrators and staff shows that professional development can influence providers' willingness and ability to include children with special needs in their programs.
DATE:
TEAM MEMBERS: Jane Sharp Elizabeth Rodas Alan Savodnik
resource research Public Programs
Our study looks at how participation in a continuous quality improvement initiative produces higher-quality practice in Rhode Island’s afterschool community by fostering change in program management practices. Among other findings, we discovered that quality improvement begins with program managers, who then lead the process of change.
DATE:
TEAM MEMBERS: Elizabeth Devaney Charles Smith Kenneth Wong
resource research Public Programs
This checklist provides a step-by-step process for preparing, leading, and ending an after school science project. The document also includes a partner checklist for science coaches and trainers when instructing adult learners.
DATE:
TEAM MEMBERS: National Partnerships for After School Science 2
resource project Media and Technology
SciGirls CONNECT is a broad national outreach effort to encourage educators, both formal and informal, to adopt new, research-based strategies to engage girls in STEM. SciGirls (pbskids.org/scigirls) is an Emmy award-winning television program and outreach program that draws on cutting-edge research about what engages girls in science, technology, engineering and math (STEM) learning and careers. The PBS television show, kids' website, and educational outreach program have reached over 14 million girls, educators, and families, making it the most widely accessed girls' STEM program available nationally. SciGirls' videos, interactive website and hands-on activities work together to address a singular but powerful goal: to inspire, enable, and maximize STEM learning and participation for all girls, with an eye toward future STEM careers. The goal of SciGirls is to change how millions of girls think about STEM. SciGirls CONNECT (scigirlsconnect.org) includes 60 partner organizations located in schools, museums, community organizations and universities who host SciGirls clubs, camps and afterschool programs for girls. This number is intended grow to over 100 by the end of the project in 2016. SciGirls CONNECT provides mini-grants, leader training and educational resources to partner organizations. Each partner training session involves educators from a score of regional educational institutions. To date, over 700 educators have received training from over 250 affiliated organizations. The SciGirls CONNECT network is a supportive community of dedicated educators who provide the spark, the excitement and the promise of a new generation of women in STEM careers. Through our partner, the National Girls Collaborative Project, we have networked educational organizations hosting SciGirls programs with dozens of female role models from a variety of STEM fields. The SciGirls CONNECT website hosts monthly webinars, a quarterly newsletter, gender equity resources, SciGirls videos and hands-on activities. SciGirls also promotes the television, website and outreach program to thousands of elementary and middle school girls and their teachers both locally and nationally at various events.
DATE: -
TEAM MEMBERS: Rita Karl