Skip to main content

Community Repository Search Results

resource project Exhibitions
The Montana Natural History Center, in collaboration with the University of Montana, will develop an exhibit to showcase a selection of the university's extensive fossil collection. This new exhibit will help create inclusive, inquiry-based, educational opportunities for preschoolers through adults. University faculty will guide specimen interpretation and story development. The exhibit will explore modern research into evolution in a time of climate change, sharing ongoing university research and highlighting STEM careers and citizen science work. The project is based on interests identified through surveys, museum visitor recommendations, and a member focus group.
DATE: -
TEAM MEMBERS: Drew Lefebvre
resource project Exhibitions
The Thinkery will develop research-based exhibit materials and community resources to support adults as learning facilitators for their children. The museum will formalize a decade-long research relationship with a nationally recognized expert in child development and learning to establish new infrastructure and capacity to translate best practices from learning sciences into museum operations. The museum will create a 180-foot learning hub that blends elements of an exhibition and research space, allowing the prototyping and evaluation of exhibits by engaging visitors as active participants in research studies. The project team will produce bilingual exhibit prompts cards, signage, and enhancements to educate and inform parents by offering STEAM knowledge, inquiry questions, play-based learning and child development information. Additional project activities will include the development and implementation of related staff trainings and the establishment of an online parent resource gallery.
DATE: -
TEAM MEMBERS: Matt Stalberger
resource project Public Programs
This 4-year project addresses fundamental equity issues in informal Science, Technology, Engineering and Mathematics (STEM) learning. Access to, and opportunities within informal STEM learning (ISL) remain limited for youth from historically underrepresented backgrounds in both the United States and the United Kingdom. However, there is evidence that ISL experiences can expand opportunities for youth learning and development in STEM, for instance, increase positive attitudes towards educational aspirations and future careers/pursuits, improve grades and test scores in school settings, and decrease disciplinary action and dropout rates. Through research and development, this project brings together researchers and practitioners to focus on the experiences, practices and tools that will support equitable youth pathways into STEM. Working across conceptual frameworks and ISL settings (e.g. science centers, community groups, zoos) and universities in four urban contexts in two different nations, the partnership will produce a coherent knowledge base that strengthens and expands research plus practice partnerships, builds capacity towards transformative research and development, and develops new models and tools in support of equitable pathways into STEM at a global level. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This Equity Pathways project responds to three challenges at the intersections of ISL research and practice in the United States and the United Kingdom: 1) lack of shared understanding of how youth from historically underrepresented backgrounds perceive and experience ISL opportunities across national contexts, and the practices and tools needed to support empowered movement through ISL; 2) limited shared understanding and evidence of core high-leverage practices that support such youth in progressing within and across ISL, and 3) limited understanding of how ISL might be equitable and transformative for such youth seeking to develop their own pathways into STEM. The major goal of this Partnership is for practitioners and researchers, working with youth through design-based implementation research, survey and critical ethnography, to develop new understandings of how and under what conditions they participate in ISL over time and across settings, and how they may connect these experiences towards pathways into STEM. The project will result in: 1) New understandings of ISL pathways that are equitable and transformative for youth from historically underrepresented backgrounds; 2) A set of high leverage practices and tools that support equitable and transformative informal science learning pathways (and the agency youth need to make their way through them); and 3) Strengthened and increased professional capacity to broaden participation among youth from historically underrepresented backgrounds in STEM through informal science learning. The project will be carried out by research + practice partnerships in 4 cities: London & Bristol, UK and Lansing, MI & Portland, OR, US, involving university researchers (University College London, Michigan State University, Oregon State University/Institute for Learning Innovation) practitioners in science museums (@Bristol Science Centre, Brent Lodge Park Animal Centre, Impressions 5, Oregon Museum of Science & Industry) and community-based centers (STEMettes, Knowle West Media Centre, Boys & Girls Clubs of Lansing, and Girls, Inc. of the Pacific Northwest).
DATE: -
resource research Informal/Formal Connections
In this article, we follow up on food scientists' findings that people judge new food technologies and related products (un)favourably immediately after just hearing the name of the technology. From the reactions, it appears that people use their attitudes to technologies they know to evaluate new technologies. Using categorization theory, in this study we have found that, by triggering associations with a familiar technology, a name of the new technology can be enough to determine emerging attitudes. Comparison between the technology used for categorization and another familiar technology had
DATE:
TEAM MEMBERS: Reginald Boersma P. Marijn Poortvliet Bart Gremmen
resource research Media and Technology
Keyes [2004, p. 15] says: “In the post-truth era we don't just have truth or lies but a third category of ambiguous statements that are not exactly the truth but fall short of a lie”. In this paper about Hector's and Maui dolphin management in New Zealand, we argue that some scientific knowledge about these species presented and disseminated in ways that equate to this third category and as such may be classed as ‘post-truth type communication’. This generates citizen mistrust in science, scientists and government agencies and inflames conflict among informed stakeholders. We argue trust may
DATE:
TEAM MEMBERS: Anna Palliser Giles Dodson
resource research Media and Technology
The study contributes to mediatization research. Mediatization is understood as a process during which individual and collective actors adapt towards the demands of publicity and public attention. The manuscript introduces a differentiation of mediatization strategies, ranging from defensive to offensive strategies. This conceptual differentiation is applied empirically regarding relevant stakeholders within the German science-policy constellation from politics, science, and science funding. Results are based on 35 in-depth interviews with decision makers. The results section deals with
DATE:
TEAM MEMBERS: Andreas Scheu
resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource evaluation Public Programs
The summative evaluation report for Project TRUE focuses on program implementation, participant experiences, organizational capacity outcomes and project scale-up over the five-year project. Appendix includes logic model and instruments.
DATE:
TEAM MEMBERS: Rachel Becker-Klein Theresa Fox
resource evaluation Public Programs
The Vertically Integrated Science Learning Opportunity (VISLO) program builds upon an existing three-way partnership between (i) faculty, graduate students, and undergraduate students form the University Nebraska-Lincoln (UNL), (ii) the 21st Century Community Learning Centers (CLC) in Lincoln, NE, and (iii) The University of Nebraska State Museum. VISLO uniquely incorporates vertically-integrated peer instruction across educational levels, including: graduate, undergraduate, middle school, and elementary school. Throughout the program, participants of all identified educational levels had
DATE:
TEAM MEMBERS: Trish Wonch Hill Eric Weber Maricela Galdamez Cassidy Whitney Eileen Hebets
resource project Public Programs
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
DATE: -
TEAM MEMBERS: Janice Straley Ellen Chenowith
resource project Public Programs
In collaboration with a wide variety of non-profit organizations (Project SYNCERE, Little Village Environmental Justice Organization, Chicago Freedom School, Chicago Botanic Garden, Friends of the Chicago River, Institute for Latino Progress), the University of Chicago-Illinois seeks to prepare 30 new science teaching fellows (TFs) while building the capacity of 10 master teaching fellows (MTFs) to be leaders in urban science education. The project will address the professional development of all participants through a three-pronged mechanism which emphasizes (a) content-specific information that focuses on Next Generation Science Standards, (b) culturally relevant practices, and (c) teacher inquiry/research. The work will be performed in partnership with the Chicago Public Schools.

Recent graduates, career changers, and in-service Master Teachers will be provided with (a) a broad range of science concentrations including biology, chemistry, earth and space science, environmental science, and physics, (b) a unique urban perspective on science education that emphasizes diverse learning assets and equity, and (c) professional development opportunities within a community of faculty, teacher-leaders, and non-profit organizations. TFs will be prepared for licensure while earning a Master's in Instructional Leadership: Science Education, learning to teach and examine their practice as it relates to teaching, and learning within specific communities. MTFs will learn to conduct practitioner research and lead teacher inquiry groups examining essential and enduring challenges in STEM teacher practice and student learning. Formative and summative evaluation will focus on analysis of both qualitative and quantitative data related to degree and licensure attainment, the various teaching practice activities (lesson plans, participant surveys, etc.), and progress in meeting the overarching project goals. In doing so, the project will advance knowledge and understanding of the role played by community-based partnerships of university faculty, school teacher-leaders, and local non-profit entities in enhancing teacher education and development, and the circumstances that promote their success. The results of this work will be presented at national meetings of the American Educational Research Association and the American Association of Colleges of Teacher Education
DATE: -
TEAM MEMBERS: Maria Varelas Chandra James Carole Mitchener Aixa Alfonso Daniel Morales-Doyle
resource project Public Programs
Science outreach represents a strategy that helps to connect scientists with non-specialized audiences in culturally relevant ways, with the overarching goal of bridging science and society. The concept of science outreach dates back to the beginning of modern science research, but in more recent times, science outreach is increasingly seen as a necessary component of the scientific enterprise, particularly in the context of promoting access, equity, and inclusivity. Yet, challenges exist with regard to scaling and sustaining science outreach efforts. As the field of science outreach moves towards professionalization, it is important to understand how science outreach programs and activities are currently viewed among members of the scientific community. The goal of this project is uncover how science outreach is valued among scientific researchers, learn what motivates scientists to participate in science outreach related initiatives, and examine how gender and race influences participation. The results of this project have the potential to raise awareness about the importance of science outreach and ultimately support increased, effective, and sustainable public engagement with science.

The aims of this project will be accomplished through the creation, dissemination, and analysis of a nationwide survey instrument which will be developed with collaborative input from representative members of the growing national science outreach community. The survey instrument will be tailored to query three distinct groups of respondents that exist within the scientific community: 1) Respondents who do not conduct science outreach; 2) Respondents who participate in science outreach with varying frequency; 3) Respondents who practice science outreach as their profession. A large-scale survey will be conducted and the responses will be analyzed and shared with the broad scientific community through peer-reviewed publication, alongside complementary write-ups and future recommendations, which will be shared on free and publicly accessible web platforms.
DATE: -
TEAM MEMBERS: Jeanne Garbarino Nicole Woitowich