Skip to main content

Community Repository Search Results

resource project Media and Technology
"Ongoing collaboration-wide IceCube Neutrino Observatory Education and Outreach efforts include: (1) Reaching motivated high school students and teachers through IceCube Masterclasses; (2) Providing intensive research experiences for teachers (in collaboration with PolarTREC) and for undergraduate students (NSF science grants, International Research Experience for Students (IRES), and Research Experiences for Undergraduates (REU) funding); and (3) Supporting the IceCube Collaboration’s communications needs through social media, science news, web resources, webcasts, print materials, and displays (icecube.wisc.edu). The 2014 pilot IceCube Masterclass had 100 participating students in total at five institutions. Students met researchers, learned about IceCube hardware, software, and science, and reproduced the analysis that led to the discovery of the first high-energy astrophysical neutrinos. Ten IceCube institutions will participate in the 2015 Masterclass. PolarTREC teacher Armando Caussade, who deployed to the South Pole with IceCube in January 2015, kept journals and did webcasts in English and Spanish. NSF IRES funding was approved in 2014, enabling us to send 18 US undergraduates for 10-week research experiences over the next three years to work with European IceCube collaborators. An additional NSF REU grant will provide support for 18 more students to do astrophysics research over the next three summers. At least one-third of the participants for both programs will be from two-year colleges and/or underrepresented groups. "
DATE: -
TEAM MEMBERS: Jim Madsen Silvia Bravo Gallart
resource project Public Programs
We a have full slate of programs including science academies for underrepresented high school and middle school students; Large programs for the public including holiday lectures, stars of materials science lectures, materials science and nano days for the public; Teacher development programs including Research Experience for Teachers and Teachers as Scholars; Research Experience for Undergraduates; Graduate Summer School on Condensed Matter; and many other programs.
DATE: -
TEAM MEMBERS: Daniel Steinberg
resource project Public Programs
The Center for Sustainable Polymers implements and fosters a wide range of educational and public outreach activities. Our faculty, researchers, students, and staff work together to engage the public and educate the citizenry and policy makers on the societal importance of sustainable polymers and technologies. An important aspect of the CSP’s work is to broaden the participation of underrepresented groups in science, technology, engineering, and math (STEM) fields by relying on key community partners.
DATE: -
TEAM MEMBERS: Jennifer Henderson
resource project Media and Technology
The mission of QESST public outreach is to provide a platform for engaging the community; students, parents, teachers, and the general public; in discussions about solar energy. Although there is a growing interest in advances of solar energy, many misconceptions prevail amongst the general community. Community outreach serves as a mechanism for engaging people and drawing them in. It is often the hook that creates interest in parents who pass that interest onto their children, or lures young students into more formalized QESST programs. Our outreach events range in scale from small workshops, large university wide open houses, and participation in educational television.
DATE: -
TEAM MEMBERS: Tiffany Rowlands
resource project Media and Technology
Xraise provides experiences that empower individuals by making science familiar and accessible. Immersed with scientists themselves, we facilitate hands-on, minds-on activities that involve the direct exploration of physics phenomena. Our relationship with K12 students, educators and community partners provides us with a platform for exploring personal intuitions, developing understandings and fostering excitement in science.
DATE: -
TEAM MEMBERS: Lora Hine Erik Herman
resource project Media and Technology
This project will study two emerging and innovative technologies: interactive, dynamic simulations and touch-based tablet devices. The use of touch-based tablet technology (e.g., iPads) in the classroom is rapidly increasing, though little research has been done to understand effective implementation for learning science. Interactive simulations are now in use across K-16 levels of education, though what impact tablet devices have on the effective implementation of science simulations is not yet known. This project will explore this new frontier in education, over a range of contexts, providing new insight into effective interactive simulation design, classroom facilitation techniques, and the effects of tablet-based simulation use on underrepresented populations in STEM courses. Together, Dr. Emily Moore (PhET, UCB), a leader in interactive simulation design and classroom use, and Dr. Roy Tasker of the University of Western Sydney (UWS), a leader in chemistry education research, science visualizations, and teaching with technology, will research on the new technology frontier in science education - laying the groundwork for future investigations of foundational questions in technology use for learning science. This work has great potential to transform the future of science learning, making it both more engaging and more effective for diverse populations. The research findings will immediately impact 1) the design of new and existing PhET simulations - reaching millions of students and teachers using PhET simulations worldwide - and 2) the development of best practices guidelines for teachers using tablet technology to increase student learning, engagement, and participation in STEM disciplines.
DATE: -
TEAM MEMBERS: Emily Moore
resource project Media and Technology
The PhET Interactive Simulations group at the University of Colorado is expanding their expertise of physics simulations to the development of eight-to-ten simulations designed to enhance students' content learning in general chemistry courses. The simulations are being created to provide highly engaging learning environments which connect real life phenomena to the underlying science, provide dynamic interactivity and feedback, and scaffold inquiry by what is displayed and controlled. In a second strand of the project, a group of experienced faculty participants are developing and testing lecture materials, classroom activities, and homework, all coordinated with well-established, research-based teaching methods like clicker questions, peer instruction, and/or tutorial-style activities, to leverage learning gains in conjunction with the simulations. The third strand of the project focuses on research on classroom implementation, including measures of student learning and engagement, and research on simulation design. This strand is establishing how specific characteristics of chemistry sim design influence engagement and learning, how various models of instructional integration of the sims affect classroom environments as well as learning and engagement, and how sim design and classroom context factors impact faculty use of sims. To ensure success the project is basing sim design on educational research, utilizing high-level software professionals (to ensure technically sophisticated software, graphics, and interfaces) working hand-in-hand with chemistry education researchers, and is using the established PhET team to cycle through coding, testing, and refinement towards a goal of an effective and user friendly sim. The collection of simulations, classroom materials, and faculty support resources form a suite of free, web-based resources that anyone can use to improve teaching and learning in chemistry. The simulations are promoting deep conceptual understanding and increasing positive attitudes about science and technology which in turn is leading to improved education for students in introductory chemistry courses both in the United States and around the world.
DATE: -
TEAM MEMBERS: Katherine Perkins Robert Parson