Skip to main content

Community Repository Search Results

resource research Media and Technology
Charles Darwin is largely unknown and poorly understood as a historical figure. Similarly, the fundamental principles of evolution are often miss-stated, misunderstood, or entirely rejected by large numbers of Americans. Simply trying to communicate more facts about Darwin, or facts supporting the principles of evolution is inadequate; neither students nor members of the public will care or retain the information. On the contrary, building facts into a one-on-one conversational narrative creates an memorable opportunity to learn. Here, we create a digital-media, self-guided question and answer
DATE:
TEAM MEMBERS: David J. Lampe Brinley Kantorski John Pollock
resource research Media and Technology
The cyberlearning community in the United States brings computer scientists and learning scientists together to design and study innovative learning technologies. The Cyberlearning Community Report: The State of Cyberlearning and the Future of Learning With Technology highlights examples of the exciting work our community is engaged in as we integrate the latest innovations in learning science and computer science into new research designs and methods. This work is also driving the need for new learning sciences in areas such as embodied cognition, identity, and affect, and requires advances
DATE:
TEAM MEMBERS: June Ahn Jodi Asbell-Clarke Matthew Berland Catherine Chase Noel Enyedy Judith Fusco Shuchi Grover Erica Halverson Kemi Jona H Chad Lane Wendy Martin Emma Mercier Tom Moher Amy Ogan Nichole Pinkard Joseph Polman Jeremy Roschelle Patricia Schank Katie Headrick Taylor Michelle Wilkerson Marcelo Worsley
resource project Media and Technology
Developing and maintaining a diverse, innovative workforce in the fields of science, technology, engineering and math (known as STEM) is critical to American competitiveness in the world, but national surveys report a current and future shortage of highly qualified STEM professionals in the US. One problem creating this shortage is that more than half of all college students who declare a major in STEM fields drop out or change their majors in the first two years of their post-secondary education. This problem is particularly acute for first generation college students. If we could increase the STEM degree completion rate by just 25%, we would make up 75% of the additional workforce needed over the next decade.

Our project aims to increase the STEM persistence of first generation college students and focuses on rural students in West Virginia. Project partners including scientists from National Labs, college faculty, local school system staff, informal educators, State Department of Education officials, and West Virginia college students will collaborate to develop summer and academic year activities that support young undergraduates majoring in STEM. Activities that we will pilot include early opportunities to do science research, academic year courses that develop science, math and communication skills, and the formation of Hometown STEM Ambassadors; undergraduate STEM students that encourage younger students back in their hometown schools. We will study the impact of these activities on students' persistence in STEM majors.

Our Project is called FIRST TWO: Improving STEM Persistence in the First Two Years of College (FIRST TWO).

Technical Details:

During the Development Launch Project, partners will create and pilot components of two courses that will confer college credit to students in two and four year schools. Each course will have as its center piece a research and development internship. By the end of the Project Development Pilot, FIRST TWO course modules will be integrated into courses the State, and be transferable between community colleges and four-year schools.

An innovative component of FIRST TWO is the creation of Hometown STEM ambassadors--students who participate in both courses will be prepared to mentor their peers, and also conduct outreach in their home school districts. They will make presentations to hometown K-12 students, and will discuss STEM college readiness issues with local education leaders. We believe reconnecting post-secondary students with their home communities and providing place-based relevance to their STEM education will have a positive impact on their persistence, as well as the added benefit of encouraging K-12 students to envision themselves as future STEM professionals.

FIRST TWO will:

- integrate early experience in STEM internships, online communities of practice and STEM skills development into a discovery-based "principles of research and development" college seminar for first year students;

- sustain engagement through a second service learning course, called STEM Leadership that will develop communication and mentoring skills and produce peer mentors who will mentor younger students, join in the efforts to change the STEM education experience at their schools, and conduct outreach in their hometown communities during the students? second year and third years.

- secure state-wide adoption and transferability of these courses, or course materials, and ultimately scale the program across the Appalachian region and to other states with large rural student populations.

- collaborate with National Labs to determine the feasibility of a National STEM Persistence Alliance partnering National Lab internship programs with 2 and 4-year schools who serve FGC students.

Finally, there are many studies that inquire into the factors that correlate with post-secondary retention in general, and with STEM attrition specifically but few that focus on rural students. FIRST TWO will fully articulate a rigorous educational research project aimed at advancing understanding of the factors affecting rural students' entry into and persistence in STEM career pathways. This research will study the impact FIRST TWO program components make on rural FGC students' persistence in STEM majors. Instruments will be developed and validated that test the components proposed in FIRST TWO interventions. As we scale the program to a larger Alliance, so will the research study scale, providing a unique opportunity to inform the education community about the rural students' experience.
DATE: -
TEAM MEMBERS: Sue Heatherly Karen ONeil Erica Harvey
resource project Media and Technology
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:

Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.

Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.

This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
DATE: -
TEAM MEMBERS: Melinda Miller Gibbons Erin Hardin
resource research Media and Technology
Brazilian research has grown intensely in all areas of microbiology, with the increase in the amount of governmental resources for the sector and the strengthening of a greater number of research groups. However, very few academic studies deal with research about teaching and science communication in microbiology. There is no in-depth study of how this topic is currently being divulgated in communication journals, didactic books and the Internet, or about the interest and the difficulties faced by researchers in communicating microbiology to the general public. This paper investigates academic
DATE:
TEAM MEMBERS: Daniela Franco Carvalho Jacobucci Giuliano Buza Jacobucci
resource research Media and Technology
In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.
DATE:
TEAM MEMBERS: Anthony Kelly
resource research Media and Technology
This implementation study explores middle school, high school and community college student experiences in Globaloria, an educational pilot program of game design offered in schools within the U.S. state of West Virginia, supported by a non-profit organization based in New York City called the World Wide Workshop Foundation. This study reports on student engagement, meaning making and critique of the program, in their own words. The study's data source was a mid-program student feedback survey implemented in Pilot Year 2 (2008/2009) of the 5 year design-based research initiative, in which the
DATE:
TEAM MEMBERS: Rebecca Reynolds Idit Caperton
resource project Media and Technology
Ways of Knowing, Inc. is developing "The Writing Project," two one-hour television documentary programs about the science (the archeology and written history, anthropology, and cognitive science) of writing systems and, at the same time, about "creative writing," from cuneiform tablets to e:mail. The programs will show how writing is a different thing from speech, and how it did not evolve, like speech, but had to be invented. The goal of the project is to inform a wide, general audience about the most important technological invention since the beginning of civilization, to introduce them to the science of writing systems (grammatology), and to create an original "Introduction to Writing" for colleges and high schools. During this planning phase, the staff will conduct the research needed to bring order and focus to the topic and develop a treatment for presenting the topic in the two films. The PI and his colleagues would draw upon the wisdom of numerous experts in the field of science of writing including three world renowned scholars: William Bright, University of Colorado, Professor Emeritus, UCLA, and editor of "Written Language and Literacy;" Peter Daniels, author, scholar, lecturer on grammatology, and editor of "The World's Writing Systems;" and Victor Mair, Professor of Chinese at U-Penn. On the literary side, writers to be interviewed in the planning phase include Kurt Vonnegut, Elmore Leonard, and Helen Vendler. Specific costs involved in the nine-month planning phase include travel; producer, writer, and researcher fees; fees to consultants; and mini conferences of experts.
DATE: -
TEAM MEMBERS: Gene Searchinger
resource project Media and Technology
This is a proposal for a 3 year, $1,297,456 project to be conducted as collaboration among 5 higher education institutions and one school system across the country, with St. Joseph's University in Philadelphia, PA serving as the lead institution (other collaborators are from Colorado School of Mines, Ithaca College, Santa Clara University, Duke University, and Virginia Beach School System). The primary goal is to attract and retain students in computer science, especially women and underrepresented minorities (including two EPSCoR states). To this end, the project will use Alice, a software program that utilizes 3-D visualization methods, as a medium to create a high-level of interest in computer graphics, animation, and storytelling among high school students, hence to build understanding of object-based programming. Such an IT focus on media and animation is aligned with national computer science standards. The project will build a network of college and high school faculty, who will offer workshops and provide continuing support during the academic year. In each site, pairs of teachers from each participating school (total = 90) will learn with university faculty via a 3-week summer program in which an introduction to using Alice for teaching will be followed by teacher development of materials for students that will then be used to teach high school students. An experimental start at one site will be followed by implementation at four additional sites and culminated with revised implementation at the sixth site (1-4-1 design).
DATE: -
TEAM MEMBERS: Susan Rodger
resource project Media and Technology
The Informal Science Education Program has been supporting the radio series "Living on Earth" for several years. The World Media Foundation is now adding environmental science and technology features to "Living on Earth" and is developing and testing an outreach component that will involve youth as researchers and radio producers. The science and technology features, ranging in length from four to twenty-four minutes, will depart from the usual news-driven reports on the programs. Many of the segments will illustrate basic building blocks of environmental science, technology and related mathematics. Others will profile diverse pioneers in these disciplines. The radio programs will be the framework for an interdisciplinary exploration program for youth. Working with a team of educators from the Antioch University Graduate Program in Environmental Education, the project staff will develop a program in which secondary school aged youth cooperate with peers to produce professional, concise reporting on local environmental issues. Living on Earth will feature the best of the student work on National Public Radio and highlight these pieces as an expanded feature on its website.
DATE: -
TEAM MEMBERS: Stephen Curwood
resource project Media and Technology
Talcott Mountain Science Center, in cooperation with the Urban Schools Learning Network (encompassing a variety of state, regional and national partners), seeks $698,141 in National Science Foundation funds under the Informal Science Education Program for a three year national model for increased minority interest and participation in Informal Science Education Program for a three year national model for increased minority interest and participation in informal science education. The title of this partnership is Project PROMMISE )Promoting Role Model Minorities in Science Education). Over the next three years, Project PROMMISE will produce and broadcast at least 30 distance learning programs for thousands of secondary level students in urban and disadvantaged communities throughout the U.S. These Project PROMMISE broadcasts will bring distinguished minority and women scientists, explorers, astronauts and other figures in touch with urban young people through interactive video programming. Broadcasts will be preceded and followed by hands- on informal science education activities. The project also will broadcast national career exposure, exploration, and mentoring programs to better inform urban minority students of academic and career enrollment in secondary and post-secondary math, science and technology studies and cultural isolation by urban students, teachers and urban informal science education institutions. Major national partners for reform and pre- college minority enrichment are participating in the project, including the Edna McConnell Clark Middle School Change Network, the Museum Satellite Network, PIMMS at Wesleyan, the CT Pre- Engineering Program (CPEP). Private sector support has been gained from United Technologies, CIGNA and Union Carbide.
DATE: -
TEAM MEMBERS: Donald LaSalle Glenn Cassis Daniel Barstow
resource project Media and Technology
Project Enhanced Science Learning (PESL) offers learning partners opportunities to engage in authentic scientific inquiry through apprenticeship. Such inquiry is often enabled by dynamic interactions among learning partners in physical proximity. Yet scientific and business practice using Internet and broadband services recognizes that not all partners necessary to an interaction can be co-located. Our vision uses new technologies to extend the collaborative "reach" of PESL to include diverse expertise among remote learners, teachers, and scientists. This work, in atmospheric sciences, extends collaborative media beyond asynchronous text-only email to shared workspaces and two-way audio/video connections that allow for collaborative visualization of science phenomena, data, models - What You See Is What I See (WYSIWIS). Tools for local- and wide-area networked learning environments will enable highly interactive, media-rich communications among learning partners. Research on these learning architectures will provide pedagogy and social protocols for authenticating the science learning experience in classrooms and other spaces. Greater motivation to learn and enhanced science learning in terms of more valid, performance assessments should result from students' participations. The next decade brings widespread, networked multi-media interpersonal computing. This project will provide a blueprint to inform the effective use of interpersonal collaborative media for science education.
DATE: -
TEAM MEMBERS: Roy Pea Elliot Soloway Louis Gomez