Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.

The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.

This award is being co-funded with the Office International and Integrative Activities.
DATE: -
TEAM MEMBERS: Bruce MacFadden
resource project Media and Technology
Over three years beginning in January 2016, the Science Museum of Virginia will launch a new suite of public programming entitled “Learn, Prepare, Act – Resilient Citizens Make Resilient Communities.” This project will leverage federally funded investments at the Museum, including a NOAA-funded Science On a Sphere® platform, National Fish and Wildlife-funded Rainkeepers exhibition, and the Department of Energy-funded EcoLab, to develop public programming and digital media messaging to help the general public understand climate change and its impacts on Virginia’s communities and give them tools to become resilient to its effects. Home to both the delicate Chesapeake Bay ecosystem and a highly vulnerable national shoreline, Virginia is extremely susceptible to the effects of climate change and extreme weather events. It is vital that citizens across the Commonwealth understand and recognize the current and future impacts that climate variability will have on Virginia’s economy, natural environment, and human health so that they will be better prepared to respond. In collaboration with NOAA Chesapeake Bay Office, George Mason University’s Center for Climate Change Communication, Virginia Institute for Marine Science, Public Broadcasting Service/National Public Radio affiliates, and Resilient Virginia, the Museum will use data from the National Climatic Data Center and Virginia Coastal Geospatial and Educational Mapping System to develop and deliver new resiliency-themed programming. This will include presentations for Science On a Sphere® and large format digital Dome theaters, 36 audio and video digital media broadcast pieces, two lecture series, community preparedness events, and a Resiliency Checklist and Certification program. This project supports NOAA’s mission goals to advance environmental literacy and share its vast knowledge and data with others.
DATE: -
TEAM MEMBERS: Richard Conti
resource project Professional Development, Conferences, and Networks
The National Science Foundation (NSF) Climate Change Education Partnership Alliance (CCEPA) is a consortium made up of the six Phase II Climate Change Education Partnership (CCEP-II) program awardees funded in FY 2012. Collectively, the CCEPA is establishing a coordinated network devoted to increasing the adoption of effective, high quality educational programs and resources related to the science of climate change and its potential impacts. The establishment of a CCEPA Coordination Office addresses the need for a coordinating body that leverages and builds upon the CCEPA projects' individual initiatives. The CCEPA Coordination Office facilitates interactions to leverage a successful network of CCEP-II projects and individuals engaged in increasing climate science literacy. The efforts of the Coordination Office advance knowledge and understanding of how to effectively network related, but different, projects into a cohesive enterprise. The goal is to coordinate a functional network, where the whole is greater than the sum of the parts.

The CCEPA Coordination Office at the University of Rhode Island is helping to move the CCEPA network forward on a number of key initiatives that strengthen it, reduce duplication, and enhance its overall impact. An important role of the Coordination Office is the facilitation of the transfer of best practices between projects. An effective network forges collaborations and establishes communities of practice through network working groups, building intellectual capital network-wide. The CCEPA Coordination Office has a key role in assisting the CCEPA project PIs and staff to disseminate the results of their work. Partnerships with other relevant societies and organizations assist the Coordination Office in identifying opportunities and synergies for sharing, disseminating, and leveraging network products as well as best practices that emerge as Earth system science education models and tools are evaluated. This endeavor broadens the collective impact of the individual projects across the country.
DATE: -
TEAM MEMBERS: Gail Scowcroft
resource project Public Programs
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.

*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE: -
TEAM MEMBERS: Kristin Ruppel Clifford Montagne Lisa Lone Fight
resource project Media and Technology
The proposed project, which will build upon a successful NSF EAGER grant, will help arctic researchers explain the significance of their research widely to the general public which, in today's technologically connected world means not only in the U.S., but worldwide- and to reflect the diversity of the scientific enterprise Alaska. As proposed, the current Frontier Scientist's schedule of science reporting will be enhanced by a broadcast TV series titled Frontier Scientists to engage a larger viewing audience. A 'Do It Yourself' (DIY) component will help scientists to create their, professional-caliber media that will sustain the publics' interest and feedback in their research. An evaluation regime will insure appropriate quality and depth of communication, throughout the lifecycle of each science story.
DATE: -
TEAM MEMBERS: Liz OConnell Robert McCoy Gregory Newby
resource project Public Programs
The project is supported under the NSF Science, Engineering and Education for Sustainability Fellows (SEES Fellows) program, with the goal of helping to enable discoveries needed to inform actions that lead to environmental, energy and societal sustainability while creating the necessary workforce to address these challenges. Sustainability science is an emerging field that addresses the challenges of meeting human needs without harm to the environment, and without sacrificing the ability of future generations to meet their needs. A strong scientific workforce requires individuals educated and trained in interdisciplinary research and thinking, especially in the area of sustainability science. With the SEES Fellowship support, this project will enable a promising early career researcher to establish herself in an independent research career related to sustainability. This project builds upon Resiliency Theory and theories of applied community participation to explore two specific contexts of participatory communication (i.e., processes of collective learning and shared meaning) at the science-society interface: (1) adaptive co-management meetings in New Mexico and Oklahoma, and (2) existing education efforts by drought scientists at two Great Plains universities (Oklahoma State University and University of Nebraska-Lincoln). A mixed methods approach (including, household surveys, oral histories, key informant interviews, and pilot tests) will model community-partnership capacity for drought adaptation in Cimarron (OK) and Union (NM) Counties, and assess the impact of community-academic partnerships on drought literacy and adaptive capacity across the Great Plains. Research in adaptive co-management meetings and interactive media (as contexts for participatory communication between scientists and citizens) provides the context for innovative case study research on the role of public communication about science in community drought adaptation.

Collaboration in case study research with Host Mentor Vadjunec and outreach efforts with Partner Institution Mentor Thomas (UNL) offers a unique opportunity to research the intersections of participatory communication and scientific literacy about the human and climatic drivers of extreme drought. The core research questions addressed by this proposal are, (1) What formal and informal pathways, players, and partnerships exist for participatory communication between scientists and citizens about drought vulnerability and adaptation, (2) How does communication about drought risk and recovery inform the effective diffusion and translation of drought literacy efforts in the Great Plains, and (3) How can we design forums and spaces for sustained interaction (i.e., engagement and collective learning) between stakeholders involved in adaptive drought communication? The project objectives uniquely related to advancing research at the intersections of sustainability science and education are, (1) to identify dimensions of community and partnership capacity for drought education and pathways of adaptive drought communication across scales, (2) to advance dynamic participatory models which assist in the adaptive co-management of water resources in local communities (i.e., increasing citizen-science dialogue, mobilizing community leaders, and fostering the drought education partnerships), and (3) to design and measure the success of drought literacy efforts based on inputs from sustainability scientists at various stages of community decision-making. The adaptive drought co-management workshops in NM and OK provide spaces for stakeholder interaction, which may lead to new approaches, innovations, and learning outcomes for communities in those regions. Outreach partnerships with UNL maximize dissemination of user-friendly and culturally-relevant drought outreach products, including a project website to consolidate scientific knowledge about drought in the Great Plains and interactive media templates. Interdisciplinary collaborations and research findings will inform efforts in academic community partnerships for sustainable practices across many NSF-supported disciplines.
DATE: -
TEAM MEMBERS: Nicole Colston
resource evaluation Public Programs
In the Communities of Learning for Urban Environments and Science (CLUES) project, the four museums of the Philadelphia-Camden Informal Science Education Collaborative worked to build informal science education (ISE) capacity in historically underserved communities. The program offered comprehensive professional development (PD) to Apprentices from 8-10 community-based organizations (CBO), enabling them to develop and deliver hands-on family science workshops. Apprentices, in turn, trained Presenters from the CBOs to assist in delivering the workshops. Families attended CLUES events both at
DATE:
resource project Public Programs
In the Communities of Learning for Urban Environments and Science (CLUES) project, the four museums of the Philadelphia-Camden Informal Science Education Collaborative worked to build informal science education (ISE) capacity in historically underserved communities. The program offered comprehensive professional development (PD) to Apprentices from 8-11 community-based organizations (CBO), enabling them to develop and deliver hands-on family science workshops. Apprentices, in turn, trained Presenters from the CBOs to assist in delivering the workshops. Families attended CLUES events both at the museums and in their own communities. The events focused on environmental topics that are especially relevant to urban communities, including broad topics such as climate change and the energy cycle to more specific topics such as animals and habitats in urban neighborhoods.
DATE: -
resource project Media and Technology
This Advancing Informal Science Learning Pathways project, Using Technology to Research After Class (UTRAC), explores whether a combination of technology (e.g., iPad-enabled sensors, web-based inquiry-focused portal) and facilitated visits improves learning outcomes for rural and Native American elementary-age youth in after school programs. Expected outcomes include improved engagement, knowledge, skills, and attitudes toward science, technology, engineering, and math (STEM). Project goals include promoting STEM learning through science inquiry activities keyed to specific Next Generation Science Standards as well as improving how technology can be used to enhance learning outcomes in afterschool programs. The experimental design of this project - testing the effects of physical or virtual facilitation visits on learning outcomes - will lead to improvements in STEM learning outcomes among rural and underrepresented students. This project will employ several innovations in utilizing technology to teach STEM topics including: (i) hands-on, real-time, crowd sourced data collected by participants in their schoolyards; (ii) a pedagogic emphasis on communication of schoolyard data among and between participants; (iii) testing of motivational incentives; and (iv) partnerships between after school providers, preservice teachers, and university researchers as facilitators. The entire process will be modularized so that it can be modified in terms of place, STEM topic or student cohort. The topic focus of the project -- Life Under Snow -- is relevant to participating students, as Montana school playgrounds lie blanketed under snow for the majority of the school year; it includes elements of snow science, carbon cycle science, and a combination at the intersection of three recent literacy initiatives (e.g., Earth Science, Climate, or Energy). UTRAC will pilot and evaluate facilitated snow science/carbon cycle science activities that couple real-time schoolyard data with tools patterned after those available through WISE (Web-based Inquiry Science Environment; wise.berkeley.edu). Participants will collect and compare data with other youth participants, and researchers will use formative assessments to define interventions with potential to maximize student engagement and learning improvements among underserved youth. The project will advance understanding of informal education's potential to improve STEM engagement, knowledge, skills and attitudes by quantifying how - and to what extent - youth engage with emerging technologies iPad-enabled sensors, and crowdsourcing and visualization tools. The deliverables include a quantifying metric for learning outcomes, a training model for the iPad sensors and web application, an orientation kit, a social media portal, and database for the measurements.
DATE: -
TEAM MEMBERS: Tony Hartshorn Nick Lux Kimberly Obbink Paul Stoy
resource project Media and Technology
The goal of this three-year initiative is to expand the implementation of a currently active and proven climate education method delivered by TV weathercasters around the country. The work is a partnership of George Mason University, Yale University, Climate Central (a non-profit climate science research and media production organization), the American Meteorological Society, and NOAA and NASA. This project will include four activities: (1) recruiting 200 TV more weathercasters nationwide (currently just over 100 are participating); (2) providing participating weathercasters with professional development activities and training on use of Climate Matters materials to help them become confident and competent climate educators; (3) developing and distributing to participating weathercasters timely, localized, broadcast-ready graphics and science information, when possible tied to local weather and climatic events, to make it easy for them to educate their viewers about the local relationships between the climate and the weather; and (4) research and evaluation activities to improve the rate of use and effectiveness of Climate Matters materials by weathercasters over time and to study the effect on learning about climate by the public. Learning outcomes by the public will be evaluated using a quasi-experimental method with nationally representative surveys of the public, conducted twice per year over the course of the project. The guiding hypothesis is that there will be a dose-response relationship between the extent of TV weathercaster use of Climate Matters materials in a community (i.e., a media market) and change over time in viewers' understanding of the climate. The development of Climate Matters is based on theories of informal and experiential learning. The scaling up of the initiative applies methods derived from diffusion of innovation and social marketing theories.
DATE: -
TEAM MEMBERS: Ed Maibach Heidi Cullen
resource project Public Programs
This project by teams at the University of Alaska and the Oregon Museum of Science and Industry will engage the public in the topic of the nature and prevalence of permafrost, its scale on the earth and the important role it plays in the global climate. It builds on 50 years of informal education and outreach at the Alaskan Permafrost Tunnel near Fairbanks, AK, which, since the 1960s, has been the Nation's only underground facility for research related to permafrost and climate. The project has four components: (1) a nationally distributed 2,000 square-foot traveling exhibition; (2) exhibit and program enhancements to the learning opportunities at the tunnel; (3) programs, table-top exhibits and oral history research in 27 Native Alaskan villages; and (4) an education research study. Each of these components will be evaluated over the course of the work. By upgrading the displays at the tunnel, and by taking traveling programs to the villages, the work will extend the tunnel experience across Alaska. In the villages the team will collect stories about climate change, along with samples of real ancient ice and permafrost. These stories and materials will be used in the traveling exhibit which is expected to be at three museums per year for eight years. The research component of the initiative will build on the observation to date that the tunnel has provided thousands of visitors with an underground immersive environment where they learn about the science research being conducted and engage with climate-sensitive materials (e.g., permafrost, wedge ice, frozen silt, Pleistocene bones) using all of their senses. It has been conjectured that their learning experiences are enhanced by interacting with real vs. replicated objects. As museums often contain exhibits that are more likely to contain replicated and/or virtual objects and environments, understanding the impact that these different categories of objects have on learning is important. Using both types of materials, the project will investigate differences in their efficacy in informal science learning institutions related to climate change. Real objects are postulated to have the following attributes that stimulate fuller engagement; they are (1) information-rich by virtue of such features as their texture, odor, and dimensionality; (2) at real-life scale; (3) authentic, i.e., original objects; and (4) often unique, i.e., have inherent value. Research questions will explore the potential impacts on learning of these and related features. Methods employed will be observation, video, and interviews of the public with a particular focus on visitor talk with respect to explanations and elaborations about permafrost, tipping points, climate change, and geological time.
DATE: -
TEAM MEMBERS: Matthew Sturm Laura Conner Victoria Coats
resource project Professional Development, Conferences, and Networks
The National Parks Conservation Association (NPCA), in collaboration with the National Park Service and other organizations, will organize a climate adaptation science and education workshop that will focus on engaging diverse public audiences in learning about climate adaptation. The outcomes of the workshop will include: a strong regional network to continue and sustain the initiative; a strategic plan for Sandy Hook that will result in model for using parks as laboratories for climate adaptation education; and the identification of existing climate adaptation education projects that can inform the strategic plan and the model. These outcomes will have broad relevance for the many environmental science and education projects funded by the Advancing Informal STEM Learning Program. The workshop, centered on Gateway National Recreation Area and surrounding New York/New Jersey communities, will engage diverse stakeholders including community members, research scientists, park staff, and others. Participants will assess and further develop research findings that reveal the potential of place-based contexts, such as parks and recreation areas, as settings for learning about global adaptation issues such as sea level rise, impacts on fish habitat due to inundation and changes in water quality, impacts on recreational fishery, and coastal resilience. Workshop findings will be disseminated broadly through the NPCA national network, national parks, and other organizations concerned with climate adaptation education.
DATE: -
TEAM MEMBERS: Karen Hevel-Mingo Jodie Riesenberger Gerald Glaser Marc Stern