Skip to main content

Community Repository Search Results

resource project
iPlan: A Flexible Platform for Exploring Complex Land-Use Issues in Local Contexts
DATE: -
TEAM MEMBERS:
resource project Media and Technology
Mid-America Science Museum will implement a professional development program for its education staff and those from member museums of the Arkansas Discovery Network. Museum staffers will participate in a series of three day-long workshops on robotics, app development, and microprocessors. Workshop follow-up will be in the form of strategically scheduled internet-based meetings, an online community, and various methods of evaluation. The program will provide up-to-date professional development and training in newer technologies for educators in the museum and from across Arkansas. Training will encourage these educators to develop their own activities to increase audience engagement and use modern technology to create powerful professional development opportunities for teachers. The project will advance the museum's strategic goal of being a leader in informal science education and creating professional development opportunities for museum educators across the region.
DATE: -
TEAM MEMBERS: Jeremy Mackey
resource project Public Programs
The Clubhouse Network: A Global Community for Creativity and Achievement, a program of Boston's Museum of Science, will develop, pilot, and evaluate Light it Up! Engaging Young People in Digital Making Activities. Digital making activities combine design, computational thinking, and engineering practices that are all fundamental learning skills for the 21st century. Over the course of six months, the project team will develop a one-day, hands-on workshop that will give museum educators strategies to inspire a more diverse population of middle and high school-aged youth to consider educational and career pathways in STEM fields through engagement with local science centers. The workshop will be implemented twice with a group of 12 educators from regional museums. The museum will use tested evaluation tools to improve the quality and outcomes of the workshops. A successful prototype and evaluation will result in practices that can be adapted by other museums and cultural institutions to better reach young people with digital making activities.
DATE: -
TEAM MEMBERS: Gail Breslow
resource project Exhibitions
Planning for a permanent exhibition examining the role of horse-drawn vehicles in American life in the 19th and early 20th centuries.

A World Before Cars represents the latest phase of a major redesign of the LIM’s carriage museum, which contains one of the largest and finest holdings of horse-drawn vehicles and related transportation artifacts in the country. Utilizing the expertise of skilled consultants and the highly-regarded H. Lee Skolnick Architecture and Design Partnership, the LIM will plan an interpretive gallery composed of hands-on activity areas that explore the experiences of carriage riding/driving, the integral role of horses in 19th-century America, and the ways in which carriage design innovations informed and influenced automobile design. From a ride simulation exercise to interactive computer kiosks and a comparative display of carriage and automobile parts, this new gallery will be designed to engage a variety of different visitor age and experience levels, providing an immersive entry into the world of carriages, and the unexpected ways in which they connect to our modern lives.
DATE: -
TEAM MEMBERS: Joshua Ruff
resource project Public Programs
Biology has become a powerful and revolutionary technology, uniquely poised to transform and propel innovation in the near future. The skills, tools, and implications of using living systems to engineer innovative solutions to human health and global challenges, however, are still largely foreign and inaccessible to the general public. The life sciences need new ways of effectively engaging diverse audiences in these complex and powerful fields. Bio-Tinkering Playground will leverage a longtime partnership between the Stanford University Department of Genetics and The Tech Museum of Innovation to explore and develop one such powerful new approach.

The objective of Bio-Tinkering Playground is to create and test a groundbreaking type of museum space: a DIY community biology lab and bio-makerspace, complete with a unique repertoire of hands-on experiences. We will tackle the challenge of developing both open-ended bio-making activities and more scaffolded ones that, together, start to do for biology, biotech, and living systems what today’s makerspaces have done for engineering.

A combined Design Challenge Learning, making, and tinkering approach was chosen because of its demonstrated effectiveness at fostering confidence, creative capacity, and problem solving skills as well as engaging participants of diverse backgrounds. This educational model can potentially better keep pace with the emerging and quickly evolving landscape of biotech to better prepare young people for STEM careers and build the next generation of biotech and biomedical innovators.

Experience development will be conducted using an iterative design process that incorporates prototyping and formative evaluation to land on a final cohort of novel, highly-vetted Bio-Tinkering Playground experience. In the end, the project will generate a wealth of resources and learnings to share with the broader science education field. Thus, the impacts of our foundational work can extend well beyond the walls of The Tech as we enable other educators and public institutions around the world to replicate our model for engagement with biology.
DATE: -
TEAM MEMBERS: Anja Scholze
resource project Media and Technology
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by developing a suite of digital tools designed to support positive messaging around skill-based education and careers and to improve mentors' communication with middle school-aged youth mentees. Maintaining U.S. economic advantage requires attracting talent to high-growth, high-demand skill-based, STEM-related careers that are traditionally attained through Career and Technical Education (CTE). Replacing old negative perceptions with new, more accurate messages about CTE and then reaching youth with these messages before high school is essential. Career-focused mentoring is a vehicle for delivering these messages and supporting youth exploration of CTE as a possible path for their own lives. Investigators will explore the hypothesis that through strong connections between those best positioned to articulate industry needs (mentors) and those most receptive to filling that need (mentees), this project will improve youth awareness and interest in CTE and the rewarding careers that are available to them. Research and development activities will be carried out collaboratively in informal learning environments in Boston and New York City that serve middle school-aged youth from underrepresented communities, through career-focused mentoring programs. The project team, led by media producers of the WGBH Education Foundation, includes market researchers and communications strategists at Global Strategy Group, learning scientists at Education Development Center, and mentorship program partners at SkillsUSA, Learning for Life's Middle School Explorer Clubs, and Boy Scouts of America's Scoutreach. If promising, the career-focused mentoring programs of SkillsUSA, Learning for Life, and Boy Scouts of America will incorporate the messaging roadmap and digital tools to support their mentoring curricula, which impact greater than one million youth in each year.

In the first phase of research, investigators will study perceptions of STEM-focused CTE from a nationwide sample of 800 middle school-aged youth and 30 mentors from skill-based STEM industries. In the second phase, investigators will work with six program leaders and 30 mentors from SkillsUSA, Explorer Clubs, Scoutreach, and other mentoring programs to document the needs of mentors for support as they enter into the mentoring process. The third phase will engage mentorship program leaders and 36 mentors in the iterative development of a suite of digital tools that would support positive messaging around skill-based education and careers and that would improve mentors' communication with youth mentees. In addition, a pre-post mentorship program pilot study will explore the promise of the digital tools for effectively supporting mentor-mentee communications that improve youth awareness and interest in STEM-focused CTE and skill-based, STEM-related careers. Thirty six mentors and 288 of their youth mentees will participate in the pilot study. Data sources for research include interviews and surveys of program leaders, mentors, and mentees, as well as tracking mentor activity within the online digital tool environment. This research would advance knowledge of how mentors influence disadvantaged youth perceptions of and interest in CTE and skill-based, STEM career pathways, in which there is currently little evidence as to how mentor preparation shapes ability to positively impact youth outcomes. Major outcomes will include a) deeper understandings of youth and mentor perceptions of CTE and mentors' needs for supporting their work with mentees, b) a messaging roadmap and digital tools that prepare mentors for their work with middle school youth, and c) empirical findings regarding the potential of the digital tools for effectively supporting mentor-mentee communications that improve youth's awareness and interest in CTE and skill-based, STEM-related careers. Outcomes will be shared widely to research, education, and industry communities, locally and nationally, through social media, partner networks, conference presentations, and research publications. An advisory board will provide independent review on the project activities.
DATE: -
TEAM MEMBERS: Marisa Wolsky Hillary Wells
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The uses of technologies in emergency management and public safety are emerging rapidly, but it could take years for school STEM curricula to catch up with the technologies that are already being deployed in the field. Informal learning environments, such as Teen Science Cafés, provide a compelling venue for youth learning about rapidly-developing STEM fields such as technology. The floods and devastation caused by Hurricane Harvey provide a timely learning opportunity for them. This project, in addition to developing new materials for learning about technologies, will provide much-needed baseline research on teens' understanding of technology, technology careers, and emergency preparedness. Leveraging the robust platform of the NSF-funded Teen Science Café, the Maine Mathematics and Science Alliance will build upon its existing partnership with Science Education Solutions to develop and implement a package of educational activities, tools, and resources for a Teen Science Café that is focused on community flood events and response, using Hurricane Harvey as a model and case study. The materials will focus on advances in sensor technology, data visualization, social media, and other mobile communication apps used to detect, monitor and respond to flooding and natural disasters. The package of materials will be embraced by 20 sites in Maine. The goal is to engage at least 600 youth in themed Cafés focusing on how technology was used to respond to Harvey and is being used to manage and respond to flooding more generally. An important related goal is to conduct baseline research on what teens currently know about the flood-related technologies, as well as what they learn about it from this experience derived from recent floods in Texas, Florida, and the Caribbean islands.

A research goal of our work was to collect baseline information on teens’ level of knowledge about the role of technology in responding to a variety of natural disasters. To our knowledge, the field has not developed measures of knowledge of this increasingly important domain. We developed a quick and easy-to-administer 10-item multiple-choice measure, which we presented as a “trivia game” to be done sometime during the 90-minute Café. We did not track pre- to post-café changes in knowledge, because the Cafés emphasized very different pieces of technology as well as different types of natural disasters. Rather, we wished to establish a starting point, so that other researchers who are engaged in ERT efforts with teens have both an instrument and baseline data to use in their work.

A sample of 170 youth completed the questionnaire. The average correct response rate was 4.2 out of 10, only slightly higher than the chance of guessing correctly (3 out of 10). This suggests teens have limited baseline knowledge of Emergency Response Technology and our Cafés therefore served an important purpose given this lack of knowledge. Indeed, for half of the questions at least one incorrect answer was selected more often than the correct answer! Note that there were no statistically significant correlations between age and gender and rates of correct answers.

Three things are clear from our work: 1) Youth need and want to know about the vital roles they can play by learning to use technology in the face of natural disasters; 2) Teens currently know little about the uses of technology in mitigating or responding to disasters; and 3) Teen Science Cafés provide a timely and relatively simple way of sparking interest in this topic. The project showed that it is possible to empower youth to become involved, shape their futures, and care for their communities in the face of disasters. We plan to continue to expand the theme of Emergency Response Technology within the Teen Science Café Network. Reaching teens with proactive messages about their own agency in natural disasters is imperative and attainable through Teen Science Cafés.
DATE: -
TEAM MEMBERS: Jan Mokros
resource project K-12 Programs
This project, an NSF INCLUDES Design and Development Launch Pilot, managed by the University of Nevada, Reno, addresses the grand challenge of increasing underrepresentation regionally in the advanced manufacturing sector. Using the state's Learn and Earn Program Advanced Career Pathway (LEAP) as the foundation, science, technology, engineering and mathematics (STEM) activities will support and prepare Hispanic students for the region's workforce in advanced manufacturing which includes partnerships with Truckee Meadows Community College (TMCC), the state's Governor's Office of Economic Development, Charles River Laboratories, Nevada Established Program to Stimulate Competitive Research (Nevada EPSCoR) and the K-12 community.

The expected outcomes from the project will inform the feasibility, expandability and transferability of the LEAP framework in diversifying the state's workforce locally and the STEM workforce nationally. Formative and summative evaluation will be conducted with a well-matched comparison group. Dissemination of project results will be disseminated through the Association for Public Land-Grant Universities (APLU), STEM conferences and scholarly journals.
DATE: -
TEAM MEMBERS: David Shintani Julie Ellsworth Karsten Heise Robert Stachlewitz Regina Tempel
resource project Summer and Extended Camps
The University of Texas at Austin's Texas Advanced Computing Center, Chaminade University of Honolulu (CUH), and the Georgia Institute of Technology will lead this NSF INCLUDES Design and Development Launch Pilot (DDLP) to establish a model for data science preparation of Native Hawaiian and Pacific Islander (NHPI) students at the high school and undergraduate levels. The project is premised on the promise of NHPI communities gaining access to, and the ability to work with, large data sets to tackle emerging problems in the Pacific. Such agency over "big data" sets that are relevant to Pacific issues, and contemporary skills in data science, analytics and visualization have the potential to be transformative for community improvement efforts. The effort has the potential to advance knowledge, instructional pedagogy and practices to improve NHPI high school and undergraduate students performance in and attraction to STEM education and careers.

The project team will work to: 1) Increase interest and proficiency in data science and visualization among NHPI high school and undergraduate students through a summer immersion experience that bridges computation and culture; 2) Build data science capacity at an NHPI serving undergraduate institution (CUH) through creation of a certificate program; and 3) Develop and expand partnerships with other organizations with related goals working with NHPI populations. The month-long summer training for 20 NHPI college students, and five NHPI high school students, takes place at CUH and focuses on data science, visualization, and virtual reality, including working on problem sets that require data science approaches and incorporate geographically, socially- and culturally-relevant research themes.
DATE: -
TEAM MEMBERS: Kelly Gaither Rosalia Gomez
resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot, "Expanding Diversity in Energy and Environmental Sustainability (EDEES)", will develop a network of institutions in the United States mid-Atlantic region to recruit, train, and prepare a significant number of underrepresented, underserved, and underprivileged members of the American society in the areas of alternative energy generation and environmental sustainability. Researchers from Delaware State University (DSU) will lead the effort in collaboration with scientists and educators from the University of Delaware, Delaware Technical Community College, University of Maryland, and Stony Brook University. The program comprises a strong educational component in different aspects of green energy generation and environmental sciences including the development of a baccalaureate degree in Green Energy Engineering and the further growth of the recently established Renewable Energy Education Center at our University. The program comprises an active involvement of students from local K-12 institutions, including Delaware State University Early College High School. The character of the University as a Historically Black College (HBCU) and the relatively high minority population of the region will facilitate the completion of the goal to serve minority students. The program will also involve the local community and the private sector by promoting the idea of a green City of Dover, Delaware, in the years to come.

The goal of EDEES-INCLUDES pilot comprises the enrollment of at least twenty underrepresented minority students in majors related to green energy and environmental sustainability. It also entails the establishment of a baccalaureate degree in Green Energy Engineering at DSU. The program is expected to strengthen the pathway from two-year energy-related associate degree programs to four-year degrees by ensuring at least five students/year transfer to DSU in energy-related programs. The pilot is also expected to increase the number of high school graduates from underrepresented groups who choose to attend college in STEM majors. Based on previous experience and existing collaborations, the partner institutions expect to grow as an integrated research-educational network where students will be able to obtain expertise in the competitive field of green energy. The pilot program comprises a deep integration of education and research currently undergoing in the involved institutions. In collaboration with its partner institutions, DSU plans to consistently and systematically involve students from the K-12 system to nurture the future recruitment efforts of the network. A career in Green Energy Engineering is using and expanding up existing infrastructure and collaborations. The program will involve the local community through events, workshops and open discussions on energy related fields using social networks and other internet technology in order to promote energy literacy.
DATE: -
TEAM MEMBERS: Aristides Marcano Mohammed Khan Gulnihal Ozbay Gabriel Gwanmesia
resource project Higher Education Programs
The University of New Hampshire (UNH) NSF INCLUDES Design and Development Launch Pilot project is a collaborative effort with the Community College System of New Hampshire, Advanced Manufacturing (AM) businesses, NH Economic Development, and the University of New Hampshire to address workforce development in the Advanced Manufacturing sector in the state. The Advanced Manufacturing Program (AMP) uses a framework built on the Collective Impact collaboration model that enables AMP partners to innovate, plan, and implement strategies that significantly increase NH's community colleges (CC) as a source for future workers and leaders in AM.

Specifically, this proposal addresses the pressing need for increasing numbers of AM workers through strategies designed to increase the retention of low socioeconomic status (LSES) students in CC STEM degree programs. AMP coordinates four key implementation strategies: 1) Co-requisite remediation within mathematics and quantitative reasoning; 2) Guided Pathways mentorship with "high touch" advising and student guidance resources that combines clearly defined academic pathways leading to 4-year college transfer and job placement; 3) paid work-based learning (WBL) experiences in industry and academic research; and 4) mentor inclusiveness training to prepare the workplace and academic settings to receive LSES students into a supportive climate. Successfully coordinating these four components through the process of Collective Impact collaboration will lead to a flexible and integrated AM workforce pipeline that serves CC AM students, AM industry partners, and the state as a whole. Findings will be disseminated to academic, business, and government stakeholders in NH, the region, and nationally to inform and improve broadening participation initiatives.
DATE: -
TEAM MEMBERS: Palligarnai Vasudevan Stephen Hale Brad Kinsey Leslie Barber Melissa Aikens
resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai