Skip to main content

Community Repository Search Results

resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This proposed effort embraces broad participation by the three Ute tribes, History Colorado, and scientists in the field of archaeology to investigate and integrate traditional ecological knowledge and contemporary Western science. The project will preserve knowledge from the Ute peoples of Colorado and Utah, including traditional technology, ethnobotany, engineering and math. Results from this project will inform educational efforts in similar communities.

This project will build on the long-standing collaborations between History Colorado (HC), the Southern Ute Indian Tribe, Ute Mountain Ute Tribe and Ute Indian Tribe, Uintah & Ouray Reservation, and the Dominguez Archaeological Research Group DARG). HC will implement and evaluate a regional informal learning collaboration focused on Ute traditional and contemporary STEM knowledge serving over 128,000 learners through tribal programs, local history museums and educational networks. This project will advance the understanding of integrated knowledge and the role of Ute people as STEM learners and practitioners. This Informal Science Learning project will increase lifelong STEM learning in rural communities and create a replicable model for collaboration among tribes, history museums, and scientists.
DATE: -
TEAM MEMBERS: Liz Cook Sheila Goff Shannon Voirol JJ Rutherford
resource research Media and Technology
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. How can we come to terms with the complex social impact of new cutting-edge fields like synthetic biology, robotics, genetics and machine learning? In order to manage these transformative changes, people not only need to understand science and technology, but also to actively participate in shaping a world where our ability to control the building blocks of life and cognition is vastly expanded. The Transmedia Museum will use the interactive, engaging nature of
DATE:
TEAM MEMBERS: Ed Finn Steve Gano Ruth Wylie David Guston Micah Lande Rae Ostman
resource research Media and Technology
In the last decade, social studies of nanotechnology have been characterized by a specific focus on the role of communication and cultural representations. Scholars have documented a proliferation of the forms through which this research area has been represented, communicated and debated within different social contexts. This Jcom section concentrates on the proliferation of cultural spaces where nanotechnologies are articulated and shaped in society. The intent is that of showing how these different cultural spaces — with their specific features and implications — raise multiple issues and
DATE:
TEAM MEMBERS: Paolo Magaudda
resource research Public Programs
Recent data delivered by Eurobarometer show how Europeans tend not to perceive science and technology as important factors for the Europe’s future. While showing the scarce development of scientific culture in Europe, these data allow to understand how science and technology are exposed to risk of social marginalization, notwithstanding the results they are attaining. In order to interpret this quite contradictory picture, an analytical framework revolving around the notion of “science and technology socialization” is proposed and developed. Implications of such an approach on research
DATE:
TEAM MEMBERS: Luciano d'Andrea
resource research Media and Technology
"The Art of Discovery" discusses an ambitious educational program taught by the artist which incorporated locative media, contemporary art, site specificity, and creative work as a proposal for the integration of art, technology and science.
DATE:
TEAM MEMBERS: Susie Lee
resource research Public Programs
There is a fundamental difference between artists, who use science as an object of social examination, and artists, who believe that science represents a component of their expressive style. The idea that different ideological manipulations of the Art&Science concept can cause a distorted view on this fascinating and at the same time controversial relation is becoming clear. In our projects we use different technological and scientific applications; to us technology is an integral part of our artistic expression. The scientific and analytical approach that we use when we investigate and solve
DATE:
TEAM MEMBERS: Jurij Pavlica Sendi Mango Tom Kersevan
resource research Public Programs
This document contains the appendices and literature review from the report "Art+Science: Broadening Youth Participation in STEM Learning." It includes assessment tools used during the project.
DATE:
resource research Public Programs
Art and science represent two powerful human ways of investigating and understanding the natural and social world. Both are creative processes involving acts of observation, interpretation, meaning-making, and the communication of new insights. While standards of evidence may vary between the two fields, there are also many common practices. Many artists, for example, employ a range of computational, digital and engineering practices. Many scientists are guided in part by aesthetic considerations in the formulation of questions, theories, and models. In this report we share the results of a
DATE:
resource research Media and Technology
Before analysing the role of the mediators in relation to scientific education, I deem it important to provide a short overview on how scientific museums evolved from the early curiosity cabinets to the modern web cast. Although the term “museum” is no longer adapted to the new structures employed for the diffusion of scientific and technical culture, the evolution of the means of presentation has indeed led to several forms of human mediation. This is of course the main topic we are going to take into consideration today, as it is an important element for the impact our exhibitions may have
DATE:
TEAM MEMBERS: Brigitte Zana
resource research Public Programs
In the summer of 2003, a survey was carried out at the At-Bristol Science Centre (UK) to determine the effectiveness of the hands-on activities of "Explore". The section evaluated included 43 interactive experiences divided into two themes. The first, "Get Connected", consisted of examples of the latest digital technologies, such as a television studio, virtual volleyball, and radars. The second, "Curiosity Zone", was dedicated to natural phenomena and subdivided into three additional groups: "Natural Forces" which presented various forces of nature, "Focus on Light", which dealt with the
DATE:
TEAM MEMBERS: Francesca Conti
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project's goal is to demonstrate an educational model fully commensurate with the demands of the 21st Century workforce, and more specifically, with the emerging “green-tech” economy.
DATE:
TEAM MEMBERS: Tamara Ball
resource project Public Programs
Flying Higher will develop a permanent hands-on exhibit that conveys the fundamentals of flight, technology, materials science, and NASA’s role in aeronautics for learners ages 3-12 years and their parents/caregivers and teachers. The exhibit, public programs, school and teacher programs, and teacher professional development will develop a pipeline of skilled workers to support community workforce needs and communicate NASA’s contributions to the nation and world. An innovative partnership with Claflin University (an historically black college) and Columbia College (a women’s liberal arts college) will provide undergraduate coursework in informal science education to support pre-service learning opportunities and paid employment for students seeking careers in education and/or STEM fields. The projects goals are:

1) To educate multi-generational family audiences about the principles and the future of aeronautics; provide hands-on, accessible, and immersive opportunities to explore state-of-the-art NASA technology; and demonstrate the cultural impact of flight in our global community.

2) To provide educational standards-based programming to teachers and students in grades K–8 on NASA-driven research topics, giving the students opportunities to explore these topics and gain exposure to science careers at NASA; and to offer teachers support in presenting STEM topics.

3) To create and implement a professional development program to engage pre-service teachers in presenting museum-based programs focused on aeronautics and engineering. This program will provide undergraduate degree credits, service learning, and paid employment to students that supports STEM instruction in the classroom, explores the benefits of informal science education, and encourages post-graduate opportunities in STEM fields.
DATE: -
TEAM MEMBERS: Julia Kennard