Skip to main content

Community Repository Search Results

resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource project Professional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
DATE: -
TEAM MEMBERS: Judy Nee Elizabeth Stage Dennis Bartels Lucy Friedman Jane Quinn Pam Garza Gabrielle Lyon Jodi Grant Frank Davis Kris Gutierrez Bernadette Chi Carol Tang Mike Radke Jason Freeman Bronwyn Bevan Leah Reisman Sarah Elovich Kalie Sacco
resource project Public Programs
The Nanoscale Science and Engineering Center entitled New England Nanomanufacturing Center for Enabling Tools is a partnership between Northeastern University, the University of Massachusetts Lowell, the University of New Hampshire, and Michigan State University. The NSEC unites 34 investigators from 9 departments. The NSEC is likely to impact solutions to three critical and fundamental technical problems in nanomanufacturing: (1) Control of the assembly of 3D heterogeneous systems, including the alignment, registration, and interconnection at three dimensions and with multiple functionalities, (2) Processing of nanoscale structures in a high-rate/high-volume manner, without compromising the beneficial nanoscale properties, (3) Testing the long-term reliability of nano components, and detect, remove, or prevent defects and contamination. Novel tools and processes will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanorods, and proteins) and polymer nanostructures. This Center will contribute a fundamental understanding of the interfacial behavior and forces required to assemble, detach, and transfer nanoelements, required for guided self-assembly at high rates and over large areas. The Center is expected to have broader impacts by bridging the gap between scientific research and the creation of commercial products by established and emerging industries, such as electronic, medical, and automotive. Long-standing ties with industry will also facilitate technology transfer. The Center builds on an already existing network of partnerships among industry, universities, and K-12 teachers and students to deliver the much-needed education in nanomanufacturing, including its environmental, economic, and societal implications, to the current and emerging workforce. The collaboration of a private and two public universities from two states, all within a one hour commute, will lead to a new center model, with extensive interaction and education for students, faculty, and outreach partners. The proposed partnership between NENCET and the Museum of Science (Boston) will foster in the general public the understanding that is required for the acceptance and growth of nanomanufacturing. The Center will study the societal implications of nanotechnology, including conducting environmental assessments of the impact of nanomanufacturing during process development. In addition, the Center will evaluate the economic viability in light of environmental and public health findings, and the ethical and regulatory policy issues related to developmental technology.
DATE: -
TEAM MEMBERS: Ahmed Busnaina Nicol McGruer Glen Miller Carol Barry Joey Mead
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Public Programs
The National Nanotechnology Infrastructure Network (NNIN) is a partnership of 13 institutions (Cornell University, Georgia Institute of Technology, Harvard University, Howard University, North Carolina State University (affiliate), Pennsylvania State University, Stanford University, University of California at Santa Barbara, University of Michigan, University of Minnesota, University of New Mexico, University of Texas at Austin, and University of Washington) that provides multi-faceted, interdisciplinary, and broadly-accessible infrastructure supporting both near-term and long-term needs identified in the National Nanotechnology Initiative. The partnering facilities are open laboratories providing outstanding service to the external user, comprehensive training and staff support, and support of interdisciplinary and emerging areas of research, with openness to new materials, techniques, and applications.
DATE: -
TEAM MEMBERS: Sandip Tiwari Daniel Ralph Roger Howe
resource project Media and Technology
The Education Development Center, Incorporated, requests $2,081,018 to create informal learning opportunities in science, mathematics, engineering and technology utilizing the study of the ancient African civilization of Nubia as context. Educational activities and resources will be developed based on the extensive ongoing archeological research on historical Nubia. The two main components of the project are a traveling exhibit with related educational materials and a website that will provide the target audience an opportunity to access extensive on-line resources and activities. The project will provide community outreach and professional development for educators in museums, community groups, schools and libraries. The project is designed for thirty-six months' duration. In year one, a network of collaborators in the Boston area will focus on research and development; in year two, project materials will be piloted and evaluated in six cities, and on-line professional development programs will be conducted; and in year three, project materials will be disseminated directly to 60 sites and more broadly via the internet.
DATE: -
TEAM MEMBERS: Kristen bjork Ronald Bailey
resource project Public Programs
Understanding the Science Connected to Technology (USCT) targets information technology (IT) experiences in a comprehensive training program and professional support system for students and teachers in science, technology, engineering and mathematics (STEM). Participants have opportunities to assume leadership roles as citizen volunteers within the context of science and technology in an international watershed basin. Training includes collection, analysis, interpretation and dissemination of scientific data. BROADER IMPACTS: Building on a student volunteer monitoring program called River Watch, the USCT project enables student scientists to conduct surface water quality monitoring activities, analyze data and disseminate results to enhance local decision-making capacity. The project incorporates state and national education standards and has the potential to reach 173 school jurisdictions and 270,000 students. USCT will directly impact 81 teachers, 758 students and 18 citizen volunteers. The USCT project provides direct scientist mentor linkages for each participating school. This linkage provides a lasting process for life-long learning and an understanding of how IT and STEM subject matter is applied by resource professionals. Broader impacts include accredited coursework for teachers and students, specialized training congruent with the "No Child Left Behind Act of 2001," and building partnerships with Native American schools. INTELLECTUAL MERIT: The USCT project is designed to refocus thinking from static content inside a textbook to a process of learning that includes IT and STEM content. The USCT engages students (the next generation of decision makers) in discovery of science and technology and expands education beyond current paradigms and political jurisdictions.
DATE: -
TEAM MEMBERS: Charles Fritz Gerald VanAmburg
resource project Media and Technology
The Tech Museum of Innovation is producing a 3,000 square-foot permanent exhibition, complementary online acitivities, and a Design Challenge curriculum to engage visitors in the exploration of Internet techologies. The goals of the project are to enhance the technological literacy of middle school students, provide the general public with tools, experience, and confidence to participate in shaping the future of the internet, and advance the informal science education community through applied research in networked exhibit technology. Two distinct features of the exhibit are: 1) The Smart Museum, a computer network linking gallery and online expereinces, and 2) "dynamic content," a set of strategies for rapid exhibit updates that will mirror the changing Internet for the life of the exhibition. The Design Challenge curriculum will be used at the museum, in outreach to classrooms and community centers, and in training sessions for science educators. The summative research will be shared with the science education community via The Tech's web site as well as professional seminars, publications and conferences.
DATE: -
TEAM MEMBERS: Peggy Monahan Rachel Hellenga Greg Brown Craig Baker
resource project Public Programs
This creative project pairs grandparents or other senior citizens with children in grades K-7 for an intergenerational hands-on SMT program. The OASIS institute, which has a large national membership of adults 55 and older with centers based in 25 cities across the US, is the source of adults. Twenty intergenerational modules will be developed which address the learning styles of both children and older adults, half of which will be linked with the NSF-funded "Find Out Why" materials. Master training sessions will be conducted for OASIS trainers, who would then train volunteers at their local centers. Anticipated outcomes include increased knowledge of standards-based SMT concepts, enhanced problem-solving skills and a better understanding of how science, math and technology apply to everyday life. In addition to the modules, the program would also result in the creation of a supplementary guide for volunteers, materials kits and a comprehensive training program. It is anticipated that this exciting program will be piloted in the following nine states: MO, IN, OR, MD, AZ, TX, CA, IL and OH. Over 100,000 individuals will be impacted during the three years of the project.
DATE: -
TEAM MEMBERS: Russell Morgan Ann Benbow
resource project Media and Technology
The "Crafting & Evaluating Interactive Educational Websites" conference will be developed through a collaboration between the Cornell University Laboratory of Ornithology and the Exploratorium. The PIs will develop and host a three-day invitational conference focusing on the practice of interactive web site design, development, evaluation and maintenance intended to achieve or support informal STEM learning. The conference, which will be held in Spring, 2005, will involve 50 individuals with a wide range of expertise who will focus on a variety of issues including audience expectations and abilities, designing for learner outcomes, testing for usability, evaluation tools and accessibility. With regard to intellectual merit, conference attendees will explore challenges and barriers that hinder development of truly interactive web sites and identify best practices and promising models, tools and technologies for encouraging authentic public interaction. Conversations begun at the conference will be extended to a broader audience through development of an online manual, informed by the conference presentations and commentaries, and designed for use by the museum, media and research communities. An interactive Web site developed after the conference will allow Web developers to locate content and ideas for design, and to share new ideas and results of usability studies and evaluations.
DATE: -
TEAM MEMBERS: Theodore Koterwas
resource project Media and Technology
The "Crafting & Evaluating Interactive Educational Websites" conference will be developed through a collaboration between the Cornell University Laboratory of Ornithology and the Exploratorium. The PIs will develop and host a three-day invitational conference focusing on the practice of interactive web site design, development, evaluation and maintenance intended to achieve or support informal STEM learning. The conference, which will be held in Spring, 2005, will involve 50 individuals with a wide range of expertise who will focus on a variety of issues including audience expectations and abilities, designing for learner outcomes, testing for usability, evaluation tools and accessibility. With regard to intellectual merit, conference attendees will explore challenges and barriers that hinder development of truly interactive web sites and identify best practices and promising models, tools and technologies for encouraging authentic public interaction. Conversations begun at the conference will be extended to a broader audience through development of an online manual, informed by the conference presentations and commentaries, and designed for use by the museum, media and research communities. An interactive Web site developed after the conference will allow Web developers to locate content and ideas for design, and to share new ideas and results of usability studies and evaluations.
DATE: -
TEAM MEMBERS: Rick Bonney
resource project Professional Development, Conferences, and Networks
The Science Museum of Minnesota is requesting $279,577, of a total budget of $339,074, to plan and conduct a four-day international conference exploring issues, current practices and future directions related to furthering public understanding of current research in science and technology. The conference will bring together leading museum professionals, scientific researchers, science journalists, television producers, web developers and others who are already engaged in preliminary work for such an effort and who stand to learn from each other's experiences. The conference will center on the role of museums in informing the public about research, but will include representatives from other media and institutions crucial to its success. The specific goals of the conference are to: Explore challenges and barriers that hinder the development of public understanding of research programs. Identify "best practices" and promising models, tools and technologies for presenting current research to the public. Develop partnership strategies for creating public understanding of research program collaborations across the museum, media and research communities. Identify strategies for selecting significant research stories that are relevant to the public. Develop funding strategies and operational approaches that help sustain a consistent public understanding of research effort. The project will be under the direction of David Chittenden, Vice President for Education at the Science Museum of Minnesota. Advisors to the project include: Carol Lynn Alpert, Museum of Science, Boston; John Beatty, Distinguished Teaching Professor, University of Minnesota; Graham Farmelo, Head of Science Communications, Science Museum of London; Richard Hudson, Twin Cities Public Television, St. Paul; Ken Keller, Hubert H. Humphrey Institute of Public Affairs, University of Minnesota; Rob Semper, The Exploratorium; David Ucko, Koshland Science Center and Science Outreach, National Academy of Sciences; and Bonnie VanDorn, Executive Director, Association of Science-Technology Centers.
DATE: -
TEAM MEMBERS: David Chittenden Anne Hornickel Donald Pohlman