Skip to main content

Community Repository Search Results

resource research Public Programs
This Conference Paper was presented at the International Soceity for the Learning Sciences Confernece in June 2018. We summarize interviews with youth ages 9-15 about their failure mindsets, and if those midsets cross boundaries between learning environments. Previous research on youth’s perceptions and reactions to failure established a view of failure as a negative, debilitating experience for youth, yet STEM and in particular making programs increasingly promote a pedagogy of failures as productive learning experiences. Looking to unpack perceptions of failure across contexts and
DATE:
resource research Summer and Extended Camps
Increased emphasis on K-12 engineering education, including the advent and incorporation of NGSS in many curricula, has spurred the need for increased engineering learning opportunities for younger students. This is particularly true for students from underrepresented minority populations or economically disadvantaged schools, who traditionally lag their peers in the pursuit of STEM majors or careers. To address this deficit, we have created the Hk Maker Lab, a summer program for New York City high school students that introduces them to biomedical engineering design. The students learn the
DATE:
TEAM MEMBERS: Aaron Matthew Kyle Michael Carapezza Christine Kovich
resource project Public Programs
To reach its full potential in science, technology, engineering, and mathematics (STEM), the United States must continue to recruit, prepare and maintain a diverse STEM workforce. Much work has been done in this regard. Yet, underrepresentation in STEM fields persists and is especially pronounced for Hispanic STEM professionals. The Hispanic community is the youngest and fastest growing racial/ethnic group in the United States but comprises only seven percent of the STEM workforce. More evidence-based solutions and innovative approaches are required. This project endeavors to address the challenges of underrepresentation in STEM, especially among individuals of Hispanic descent, through an innovative approach. The University of San Diego will design, develop, implement, and test a multilayered STEM learning approach specific to STEM learning and workforce development in STEM fields targeting Hispanic youth. The STEM World of Work project will explore youth STEM identity through three mechanisms: (1) an assessment of their individual interests, strengths, and values, (2) exposure to an array of viable STEM careers, and (3) engagement in rigorous hands-on STEM activities. The project centers on a youth summer STEM enrichment program and a series of follow-up booster sessions delivered during the academic year in informal contexts to promote family engagement. Paramount to this work is the core focus on San Diego's Five Priority Workforce Sectors: Advanced Manufacturing, Information and Communications Technology, Clean Energy, Healthcare, and Biotech. Few, if any, existing projects in the Advancing Informal STEM learning portfolio have explored the potential connections between these five priority workforce sectors, informal STEM learning, and identity among predominately Hispanic youth and families engaged in a year-long, culturally responsive STEM learning and workforce focused program. If successful, the model could provide a template for the facilitation of similar efforts in the future.

The STEM World of Work project will use a mixed-methods, exploratory research design to better understand the variables influencing STEM learning and academic and career choices within the proposed context. The research questions will explore: (1) the impacts of the project on students' engagement, STEM identity, STEM motivation, and academic outcomes, (2) factors that moderate these outcomes, and (3) the impact the model has on influencing youths' personal goals and career choices. Data will be garnered through cross-sectional and longitudinal surveys and reflective focus groups with the students and their parents/guardians. Multivariate analysis of variance, longitudinal modeling, and qualitative analysis will be conducted to analyze and report the data. The findings will be disseminated using a variety of methods and platforms. The broader impacts of the findings and work are expected to extend well beyond the project team, graduate student mentors, project partners, and the estimated 120 middle school students and their families from the predominately Hispanic Chula Vista Community of San Diego who will be directly impacted by the project.

This exploratory pathways project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Perla Myers Vitaliy Popov Odesma Dalrymple Yaoran Li Joi Spencer
resource project Public Programs
The Mississippi Alliance for Women in Computing (MAWC) project will identify factors that influence and motivate female students and female African American students in Mississippi to enroll and persist in an undergraduate engineering- or science-based computing major. There is a particular need for programming that is inclusive of women and women of color who are from the southern region of the United States. These students typically have less access to extracurricular activities that encourage computing, and are less likely to visualize themselves in a computing major or career. This proposed research is to help girls to know that computer science exists and what jobs in computer science are available with a degree in computer science. A rich environment exists in Mississippi for an alliance focused on building co-curricular and mentorship opportunities. A scalable pipeline model, expandable to a Southern Alliance for Women in Computing (SAWC), will be developed with three major objectives: to attract women and women of color to computing, to improve retention rates of women in undergraduate computing majors, and to help postsecondary women make the transition to the computing workforce. Activities to support these objectives include: scaling the National Center for Women and Information Technology Aspirations in Computing award program in Mississippi, expanding scholarships for Aspirations winners, expanding student-led computing outreach programs, establishing a Mississippi Black Girls Code chapter, informing and collaborating with the Computer Science for Mississippi initiative, creating a summer bridge and living-learning community for women in computing majors, and increasing professional development opportunities for women in computing through conferences, lunch and learn meetings, job shadowing, and internships.

The project will analyze whether the co-curricular activities of MAWC lead to computing self-efficacy and ultimately female students selecting to pursue and persist in computing majors and careers. In order to understand student participation and efficacy changes, data collection for this research will be through demographic and background surveys administered to women entering an undergraduate engineering- or science-based computing major at a university in Mississippi and student surveys and evaluations in MAWC-sponsored programs. Using discriminate analysis methods, specific research questions to be addressed are: 1) Which pre-collegiate experiences influenced them to enroll, 2) Which stakeholders influenced these girls in their decision-making process, and 3) What programs are effective in impacting their persistence in the major. Predictor variables for each respective research question are: pre-collegiate experiences, stakeholders, and programs. Outcome variables are: (a) a female undergraduate student with no involvement with MAWC programming, (b) MAWC activity participant, or (c) a MAWC participant having graduated with a bachelor?s degree in a STEM major. Results will complement published longitudinal research on the gendered and raced dimensions of computing literacy acquisition in Mississippi as well as research on effective CS role model programming.
DATE: -
TEAM MEMBERS: Sarah Lee Vemitra White
resource project Public Programs
Utah Valley University (UVU) with partners Weber State University (WSU) and American Indian Services (AIS) are implementing UTAH PREP (PREParation for STEM Careers) to address the need for early preparation in mathematics to strengthen and invigorate the secondary-to-postsecondary-to-career STEM pipeline. As the preliminary groundwork for UTAH PREP, each partner currently hosts a PREP program (UVU PREP, WSU PREP, and AIS PREP) that identifies low-income, under-represented minority, first-generation, and female students entering seventh grade who have interest and aptitude in math and science, and involves them in a seven-week, three-year summer intensive program integrating STEM courses and activities. The course content blends skill-building academics with engaging experiences that promote a clear understanding of how mathematical concepts and procedures are applied in various fields of science and engineering. Courses are enhanced through special projects, field trips, college campus visits, and the annual Sci-Tech EXPO. The purpose of the program is to motivate and prepare participants from diverse backgrounds to complete a rigorous program of mathematics in high school so that they can successfully pursue STEM studies and careers, which are vital to advancing the regional and national welfare.

UTAH PREP is based on the TexPREP program that originated at the University of Texas at San Antonio and which was named as one of the Bright Spots in Hispanic Education by the White House Initiative on Educational Excellence for Hispanics in 2015. TexPREP was adapted by UVU for use in Utah for non-minority serving institutions and in regions with lower minority populations, but with great academic and college participation disparity. With NSF funding for a two-year pilot program, the project partners are building UTAH PREP through a networked improvement community, collective impact approach that, if demonstrably successful, has the ability to scale to a national level. This pilot program's objectives include: 1) creating a UTAH PREP collaboration with commitments to a common set of objectives and common set of plans to achieve them; 2) strengthening existing PREP programs and initiating UTAH PREP at two or three other institutions of higher education in Utah, each building a sustainable local support network; 3) developing a shared measurement system to assess the impact of UTAH PREP programs, adaptations, and mutually reinforcing activities on students, including those from groups that are underrepresented in STEM disciplines; and 4) initiating a backbone organization that will support future scaling of the program's impact.
DATE: -
TEAM MEMBERS: Daniel Horns Andrew Stone Violeta Vasilevska
resource project Public Programs
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models for making in a variety of settings through the Enabling the Future of Making to Catalyze New Approaches in STEM Learning and Innovation Dear Colleague Letter. This Early Concept Grant for Exploratory Research (EAGER) will test an innovative approach to bringing making from primarily informal out-of-school contexts into formal science classrooms. While the literature base to support the positive outcomes and impacts of design-based making in informal settings at the K-12 level is emerging, to date, minimal studies have investigated the impacts of making design principles within formal contexts. If successful, this project would not only add to this gap in the literature base but would also present a novel model for bridging the successful engineering design practices of making and tinkering primarily found in informal science education into formal science education classrooms. The model would also demonstrate an innovative, highly interactive way to engage high school students and their teachers in engineering based design principles with immediate real-world applications, as the scientific instruments developed in this project could be integrated directly into science classrooms at relatively minimal costs.

Through a multi-phased design and implementation model, high school students and their teachers will engage deeply in making design principles through the design and development of their own scientific instruments using Arduino-compatible hardware and software. The first phase of the project will reflect a more traditional making experience with up to twenty high school students and their teachers participating in an after-school design making club, in this case, focused on the development and testing of scientific instrument prototypes. During the second phase of the project, the first effort to transpose the after school making experience to a more formalized experience will be tested with up to eight students selected to participate in two week summer research internships focused on scientific instrument design and development through making at Northwestern University. A two-day summer teacher workshop will also be held for high school teachers participating in the subsequent pilot study. The collective insights gleaned from the after school program, student internships, and teacher workshop will culminate to inform the full implementation of the formal classroom pilot study. The third and final phase will coalesce months of iterative, formative research, design and development, resulting in a comprehensive pilot investigation in up to seven high school physics classrooms.

Using a multi-phased, mixed methods exploratory design-based research approach, this 18-month EAGER will explore several salient research questions: (a) How and to what extent does the design & making of scientific instrumentation serve as useful tasks for learning important science and engineering knowledge, practices, and epistemologies? (b) How engaging is this making activity to learners of diverse abilities and prior interests? What can be generalized to other types of making activities? (c) How accessible is the Arduino hardware and coding environment to learners? What combination of hardware and software materials and tools best support accessibility and learning in this type of digital making activity? and (d) What types of scaffolding (for students and teachers) are required to support the effective use of maker materials and activities in a classroom setting? Structured interviews, artifacts, video recordings from visor cameras, student design logs, logfiles, and ethnographic field notes will be employed to garner data and address the research questions. Given the early stage of the proposed research, the dissemination of the findings will be limited to a few select journals, teacher forums and workshops, and professional conferences.

This EAGER is well-poised to directly impact up to 125 high school physics students (average= 25 students/class), approximately 7 high school physics teachers, 6-8 high school summer interns, nearly 20 high school students participating in the after-school design making club, and indirectly many more. The results of this EAGER could provide the basis and evidence needed to support a more robust, expanded future investigation to further substantiate the findings and build the case for similar efforts to bring making into formal science education contexts.
DATE: -
TEAM MEMBERS: David Uttal Kemi Jona
resource project Public Programs
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.
DATE: -
TEAM MEMBERS: Ellen Lettvin