Skip to main content

Community Repository Search Results

resource evaluation Public Programs
Program evaluators from the Education Development Center (EDC) used a mixed-methods, quasi-experimental design to evaluate the impact on girls’ awareness and interest in science, technology, engineering, and mathematics (STEM). After the final year of the project, EDC delivered a summative report to Techbridge Girls (TBG), which was based on data collected during the five-year grant period, with a particular focus on the final year that grant funds supported programming (2017-18). Data included pre- and post-surveys with TBG participants and comparison students, participant focus groups, and
DATE:
TEAM MEMBERS: Ginger Fitzwater
resource project Public Programs
The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education in eight states that for over forty years introduce science, mathematics and engineering to K-12 students traditionally underrepresented in the discipline. This exploratory study examines the influences that those MESA activities have on students' perception of engineering and their self-efficacy and interest in engineering and their subsequent decisions to pursue careers in engineering. The MESA activities to be studied include field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement.

About 1200 students selected from 40 MESA sites in California, Maryland and Utah are surveyed with instruments that build on those used in prior studies. Focus groups with a randomly selected subset of the students provide follow-up and probe the influence of the most promising activities. In the first year of the project the instruments, based on existing instruments, are developed and piloted. Data are taken in the second year and analyzed in the third year. A separate evaluation determines that the protocols are reasonable and are being followed.

The results are applicable to a number of organizations with similar aims and provide information for increasing the number of engineers from underrepresented populations. The project also investigates the correlation between student engagement in MESA and academic performance. This project provides insights on activities used in informal settings that can be employed in the classroom practice and instructional materials to further engage students, especially student from underrepresented groups, in the study of STEM.
DATE: -
TEAM MEMBERS: Christine Hailey Cameron Denson Chandra Austin
resource research Public Programs
This paper introduces an ongoing research project on the use of electronics workshops in engaging underprivileged Latino middle and high school students in STEM – Science, Technology, Engineering and Mathematics. The project focuses on the practice of circuit bending – taking apart and creatively manipulating the circuits of children's toys to produce novel sound output. The main goal of the project is to design, develop and test curricula and materials that inspire learning in adolescents. Second hand, discarded or low cost electronics are used in the workshops as a low cost platform for
DATE:
TEAM MEMBERS: Garnet Hertz Gillian Hayes Amelia Guimarin
resource project Public Programs
This project takes an ethnographic and design-based approach to understanding how and what people learn from participation in makerspaces and explores the features of those environments that can be leveraged to better promote learning. Makerspaces are physical locations where people (often families) get together to make things. Some participants learn substantial amounts of STEM content and practices as they design, build, and iteratively refine working devices. Others, however, simply take a trial and error approach. Research explores the affordances are of these spaces for promoting learning and how to integrate technology into these spaces so that they are transformed from being makerspaces where learning happens, but inconsistently, into environments where learning is a consistent outcome of participation. One aim is to learn how to effectively design such spaces so that participants are encouraged and helped to become intentional, reflective makers rather than simply tinkerers. Research will also advance what is known about effective studio teaching and learning and advance understanding of how to support youth to help them become competent, creative, and reflective producers with technology(s). The project builds on the Studio Thinking Framework and what is known about development of meta-representational competence. The foundations of these frameworks are in Lave and Wengers communities of practice and Rogoff's, Stevens et al.'s, and Jenkins et al.'s further work on participatory cultures for social networks that revolve around production. A sociocultural approach is taken that seeks to understand the relationships between space, participants, and technologies as participants set and work toward achieving goals. Engaging more of our young population in scientific and technological thinking and learning and broadening participation in the STEM workplace are national imperatives. One way to address these imperatives is to engage the passions of young people, helping them recognize the roles STEM content and practices play in achieving their own personal goals. Maker spaces are neighborhood spaces that are arising in many urban areas that allow and promote tinkering, designing, and construction using real materials, sometimes quite sophisticated ones. Participating in designing and successfully building working devices in such spaces can promote STEM learning, confidence and competence in one's ability to solve problems, and positive attitudes towards engineering, science, and math (among other things). The goal in this project is to learn how to design these spaces and integrate learning technologies so that learning happens more consistently (along with tinkering and making) and especially so that they are accessible and inviting to those who might not normally participate in these spaces. The work of this project is happening in an urban setting and with at-risk children, and a special effort is being made to accommodate making and learning with peers. As with Computer Clubhouses, maker spaces hold potential for their participants to identify what is interesting to them at the same time their participation gives them the opportunity to express themselves, learn STEM content, and put it to use.
DATE: -
resource project Public Programs
Currently, many museums present histories of science and technology, but very few are integrating scientific activity--observation, measurement, experimentation-with the time- and place-specific narratives that characterize history-learning experiences. For the Prairie Science project, Conner Prairie is combining proven science center-style activities, developed by the Science Museum of Minnesota, with family-engagement strategies developed through extensive research and testing with audiences in historical settings. The goal of this integration is to create guest experiences that are rich in both STEM and historical content and encourage family learning. One key deliverable of this project is the Create.Connect gallery, which is currently installed at Conner Prairie. Create.Connect allows the project team to evaluate and research hands-on activities, facilitation strategies and historic settings to understand how these elements combine to encourage family conversations and learning around historical narratives and STEM content. For example, in one exhibit area families can experiment with creating their own efficient wind turbine designs while learning about the innovations of the Flint & Walling windmill manufacturing company from Indiana. The activity is facilitated by a historic interpreter portraying a windmill salesman from 1900. The interpreter not only guides the family though the process of scientific inquiry, but shares his historic perspective on wind power as well. Two other exhibit areas invite hands-on exploration of electrical circuits and forces in motion as they connect to stories from Indiana history. Evaluation and research findings from the Create.Connect exhibit will be used to develop a model that can guide other history institutions that want to incorporate STEM content and thinking into their exhibits and interpretation. By partnering with the Science Museum of Minnesota, we will combine the experience of science center professionals and history museum professionals to find the best practices for incorporating science activities into historic settings. To ensure that this dissemination model is informed from many perspectives, Conner Prairie has invited the participation of four history museums: The Museum of America and the Sea, Mystic, Connecticut; the California State Railroad Museum, Sacramento, California; the Wabash County Historical Society, Wabash, Indiana; and the Oliver H. Kelley Farm, Elk River, Minnesota. Each of the four participants will install history-STEM exhibit components which will be connected to location-specific historic narratives. Drawing on the staff experience and talents of participant museums, this project will develop realistic solutions to an array of anticipated barriers. These issues and the resulting approaches will become part of a stronger, more adaptable dissemination model that will support history museums in creating STEM-based guest experiences.
DATE: -
TEAM MEMBERS: Cathy Ferree
resource project Media and Technology
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
DATE: -
TEAM MEMBERS: Beth McGinnis-Cavanaugh Glenn Ellis Alan Rudnitsky Isabel Huff
resource project Public Programs
Through the Scientists for Tomorrow pathways project, The Science Institute at Columbia College in Chicago will test a model for preparing non-science major, pre-service elementary school teachers to deliver three ten-week informal science education modules to youth in after school programs. The initiative will bring engineering concepts, environmental science, and technology to approximately 240 urban Chicago youth (ages 10-14 years old) and their families. The Science Institute will partner with eight minority serving community based organizations and the Museum of Science and Industry, the Field Museum, and the Garfield Park Conservatory Alliance to develop and implement all aspects of the program. The goals of the program are two-fold. First, the project will develop and implement a high-quality STEM based afterschool program for under-represented youth in STEM. Second, the professional development and experience implementing the curriculum with youth in the local communities and within informal science education (ISE) institutions will extend and enrich the pre-service teachers\' STEM content and pedagogical knowledge base and better prepare them to teach science in formal and informal settings. Thirty teachers will receive specialized professional development through a seminar, course, and other support mechanisms in order to best support the implementation of the modules, while building their STEM content expertise, confidence, and pedagogical knowledge. Each module has a different STEM content focus: alternative energy (fall), the physics and mathematics of sound and music (winter), and environmental science (spring). At the end of each module, a culminating youth-led presentation will be held at one of the partnering Chicago museums. Youth will be encouraged to participate in all three modules. The formative evaluation will be conducted by the Co-Principal Investigators. Pre and post assessments, artifact reviews, and interviews will be used for the summative evaluation, which will be conducted by an external evaluator at the Illinois Institute of Technology. The project deliverables include: (a) a teacher training program, (b) an after school curriculum, and (c) media tools - DVDs, website. Over the grant period, the project intends to reach 120 youth each year, over 100 family and community members, and 30 teachers. The larger impact of this project will be the development of a scalable model for bringing relevant STEM content and experiences to youth, their families, and non-science major pre-service teachers. As a result of this project, a cadre of pre-service teachers will have: (a) increased their STEM content knowledge, (b) gained experience presenting STEM content in informal settings, (c) learned effective approaches to deliver hands-on STEM content, and (d) learned to use museum and other ISE resources in their teaching. In fact, after the grant period nearly half of the teachers will continue to work at the centers as part-time instructors, fully supported by the partnering community centers.
DATE: -
TEAM MEMBERS: Constantin Rasinariu Marelo Caplan Virginia Lehmkuhl-Dakhwe
resource project Public Programs
The Balboa Park Cultural Partnership, in collaboration with several informal science education and other cultural and business organizations in San Diego, Chicago, and Worcester, MA are implementing a research and development project that investigates a range of possible approaches for stimulating the development of 21st Century creativity skills and innovative processes at the interface between informal STEM learning and methods for creative thinking. The goal of the research is to advance understanding of the potential impacts of creative thinking methods on the public's understanding of and engagement with STEM, with a focus on 21st Century workforce skills of teens and adults. The goal of the project's development activities is to experiment with a variety of "innovation incubator" models in cities around the country. Modeled on business "incubators" or "accelerators" that are designed to foster and accelerate innovation and creativity, these STEM incubators generate collaborations of different professionals and the public around STEM education and other STEM-related topics of local interest that can be explored with the help of creative learning methodologies such as innovative methods to generate creative ideas, ideas for transforming one STEM idea to others, drawing on visual and graphical ideas, improvisation, narrative writing, and the process of using innovative visual displays of information for creating visual roadmaps. Hosting the project's incubators are the Balboa Park Cultural Partnership (San Diego), the Museum of Science and Industry (Chicago) and the EcoTarium (Worcester, MA). National partners are the Association of Science-Technology Centers, the American Association for the Advancement of Science, and the Americans for the Arts. Activities will include: the formation and collaborative processes of three incubator sites, a research study, the development of a creative thinking curriculum infused into science education, professional development based on the curriculum, public engagement events and exhibits, a project website and tools for social networking, and project evaluation. A national advisory council includes professionals in education, science, creativity, and business.
DATE: -
resource project Public Programs
This pathways project will design, develop and test Do-It-Yourself, (DIY), hands-on workshops to introduce and teach middle school females in underserved Latino communities computing and design by customizing and repurposing e-waste media technology, such as old cell phones or appliances -- items found in the students homes or neighborhoods. The major outcome of the project will be the creation of a workshop kit that covers the processes of DIY electronics learning taking place in the workshops for distribution of the curriculum to after school programs and other informal science venues. The PIs have implemented three pilot projects over the last three years that demonstrate the ability of hands-on DIY electronics curricula to motivate and encourage students and to enable them to acquire a deeper understanding of core engineering, mathematics and science concepts. This project would extend the approach to underserved Latino youth, particular girls of middle school age. This audience was identified because of the historically low rate of participation in STEM fields by people in this group and the particular challenges that females have in acquiring knowledge in technical STEM areas. The proposal suggests that the approach of using hands-on workshops that rely on low technical requirements -- essentially obsolete or discarded electronic equipment, primarily from homes of participants -- will encourage the target audience to experiment with items they are familiar with and that are culturally relevant. The hypothesis of the project is that this approach will lower barriers to experimenting with "circuit bending" - the hand-modifying of battery-powered children's toys to build custom electronic instruments and lead to greater participation and success of females in the target group. The project will provide free workshops in two neighborhood locations and be supported by undergraduate student mentors and volunteers and staff of two community groups that are part of the project, Machine Project and Girls, Inc. Participants will demonstrate the finished projects to the workshop group, mentors and parents. Each participant will receive a copy of the workshop handbook in both English and Spanish to take home so that parents, members of the community and caregivers can supervise and participate in future projects.
DATE: -
TEAM MEMBERS: Garnet Hertz Gillian Hayes Rebecca Black
resource project Media and Technology
Iridescent is a not-for-profit company that develops and implements informal science and engineering experiences for students by facilitating the translation of the work that scientists and engineers do in a way that makes that work accessible to families. The proposal expands the Iridescent outreach activities funded by the Office of Naval Research, to provide a blended combination of in-person and online support to the families of underrepresented populations. The project is producing twenty videos of scientists and engineers presenting their research that are closely aligned with one hundred scientific inquiry and engineering design-based experiments and lesson plans. These digital resources, collectively called the Curiosity Machine, provide opportunities for parents and children to engage in scientific inquiry and engineering design in multiple face-to-face and online environments, including mobile technologies. The evaluation findings from this project provide a model of how to engage STEM education practitioners, teachers and online communities, to substantively connect underserved communities, in both informal and more formal learning environments to develop experiences with engineering design and to improve students' perspectives about and motivations to prepare for STEM careers. The Curiosity Machine portal is designed to present scientists and engineers explaining the work that they do in a way that makes it accessible to parents and students. Iridescent is working at three sites across the country in South Los Angeles, the South Bronx in New York City, and San Francisco. Students and their families have multiple access points to the science and engineering videos and materials through after school activities, Family Science Nights and summer camps. The project is piloting the use of electronic badges, similar to those offered in the Boy and Girl Scouts as a mechanism to enhance the engagement and persistence of students in the online activities. The project is developing ways to evaluate student engagement and performance through the analysis of the products that students submit online in response to particular science and engineering challenges. Students can also gain extra credit at school for their participation in the Curiosity Machine activities. The materials that the Curiosity Machine activities and challenges use are those that are commonly available to families, and the project provides access to mobile technology to facilitate participation by families. Student access to out of school science and engineering experiences is limited by the resources in terms of time and availability science centers have available. This project develops the resources and tools to bridge the in-school and out of school activities for students through the use of videos and online participation in ways that expand the opportunity of students from underserved populations to continue to engage in substantive science and engineering experiences beyond what they might get during an intermittent visit to a science center. The research and evaluation that is part of this study provides information about how new forms of extrinsic motivation might be used to support student engagement and persistence in learning about science and engineering.
DATE: -
TEAM MEMBERS: Tara Chklovski
resource project Public Programs
'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
DATE: -
TEAM MEMBERS: Tara Chklovski Toby Cumberbatch Shrikanth Narayanan Doe Mayer Jed Dannenbaum Harouna Ba Molly Porter Preeti Gupta Sylvia Perez
resource project Public Programs
This CRPA award demonstrates to the public the unique use of nanoscience in Nature. The Blue Morpho butterfly is large, has blue wings and is eye catching to say the least. Its wings have been shown to exhibit interesting color characteristics under varying conditions. These characteristics and uniqueness are due to nano-molecules that are a chemical construction in the wing structure. Thus, this butterfly is the hook and segues into a discussion of nanoscience and crystal structures in Nature. Furthermore, the exhibit which is referred to as a flex-hibit is small and portable facilitating its use in out-of-museum demonstrations at public events and in rural areas. This is a colorful demonstration that is quick, interesting and reversible so audiences can be entertained for a short 5-10 minutes during which the "scientist" or staff member can briefly discuss nanoscience and how the butterfly uses this disguise. Other scientists may find this flex-hibit idea useful in their desire to demonstrate science concepts, as well. The integration of this work into the NISE network may pay large dividends in helping others with demonstrations. This is a collaboration between Georgia Tech and the Lawrence Hall of Science at Berkeley. This is a colorful demonstration that is quick, interesting and reversible so audiences can be entertained for a short 5-10 minutes during which the "scientist" or staff member can briefly discuss nanoscience and how the butterfly uses this disguise. Other scientists may find this flex-hibit idea useful in their desire to demonstrate science concepts, as well. The integration of this work into the NISE network may pay large dividends in helping others with demonstrations.
DATE: -
TEAM MEMBERS: Mohan Srinivasarao Darrell Porcello