Skip to main content

Community Repository Search Results

resource project Public Programs
The National Ocean Sciences Bowl (NOSB) is a nationally recognized high school academic competition that provides a forum for talented students to excel in science, mathematics and technology and introduces team members, their teacher/coaches, schools and communities to ocean sciences as an interdisciplinary field of study and a possible future career path. Established by the Consortium for Oceanographic Research and Education in 1998 (the Year of the Ocean), the program operates within a supportive learning community framework that involves the ocean research community in pre-college education and stimulates broad interest in and excitement about science and the oceans. The basic model for NOSB is that of a two-tiered timed competition in which pairs of four-student teams answer multiple-choice, short-answer and critical thinking questions within multiple categories related to the oceans. Each fall, over 400 participating high schools prepare their teams for 25 regional ocean sciences bowl competitions held across the United States in February and early March. Winners of these Regional Bowls advance to the national finals in late April. The current structure layers a rich array of year-round academic elements onto the basic competition framework and offers a range of program enhancements including summer internships and scholarships for NOSB alumni and opportunities for teacher professional development. Four regional bowls currently receive additional funding to expand recruitment efforts and provide mentoring and field trip experiences for students from racial, ethnic and economic groups underrepresented in the ocean sciences. CORE proposes to continue to administer and manage the National Ocean Sciences Bowl for the next five years (April 2007-March 2012). Funds are requested to add two new sites and expand the diversity initiative. To improve the credentials of the nation's teachers and informal educators, the proposal seeks funding for coach and regional coordinator professional development including a focus on the fundamental principles and concepts of ocean literacy recently developed by the ocean education community. An additional new element is a longitudinal study of educational and career paths that will assess the role that the program plays in encouraging talented students to enter the pipeline into ocean science careers and STEM (Science, Technology, Engineering and Mathematics) professions. By supporting and promoting the program's unique educational and experiential opportunities, all NOSB partners and sponsors contribute to helping our nation better prepare K-12 students in science and technology and identify and cultivate future scientists and technical experts.
DATE: -
TEAM MEMBERS: Kristen Yarincik
resource research Professional Development, Conferences, and Networks
IUFM is a centre for the in-service training of teachers and the development of didactic research. IUFM contribution to the SEDEC project is essentially built on a reflexion on educational implications of the links between science and European citizenship. We are convinced that European citizenship may be developed in scientific activities in school, by the introduction of communication moments, where pupils have to express and defend their ideas, and also to understand and accept the others’ ones. We have implemented two activities using the results of the SEDEC survey on science perception
DATE:
TEAM MEMBERS: Etienne Bolmont
resource project Professional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
DATE: -
TEAM MEMBERS: Katharine Barrett Jennifer White
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Public Programs
The X-Tech program will bring together the Exploratorium and staff at five Beacon Centers to create an innovative technology program using STEM and IT activities previously tested at the Exploratorium. At each X-Tech Club, two Beacon Center staff and two Exploratorium Youth Facilitators will work with 20 middle school students each year for a total of 300 participants. Youth Facilitators are alumni of the Exploratorium's successful Explainer program and will receive 120 hours of training in preparation for peer mentoring. Each site will use the X-Tech hands-on curriculum that will focus on small technological devices to explore natural phenomenon, in addition to digital imaging, visual perception and the physiology of eyes. Parental involvement will be fostered through opportunities to participate in lectures, field trips and open houses, while staff at Beacon Centers will participate in 20 hours of professional development each year.
DATE: -
TEAM MEMBERS: Vivian Altmann Darlene Librero Virginia Witt Michael Funk
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource project Public Programs
PolarTREC (Teachers and Researchers Exploring and Collaborating) is a three-year teacher professional enhancement program that will advance polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. PolarTREC activities and products will foster the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improvement of teacher content knowledge and teaching practices, shareable online learning resources based on real-world science, improved student knowledge of and interest in the Arctic and Antarctic, and broad public engagement in polar science. ARCUS will adapt and extend existing Teacher Research Experience (TRE) models and its own experience delivering TREC -- a TRE program supported by NSF for the Arctic -- to develop PolarTREC, a comprehensive, sustained field research experience program for K-12 teachers focusing on IPY science themes at both polar regions. Thirty-six teachers will spend two to six weeks in the Arctic or Antarctic studying a topic relevant to one of the IPY emphasis areas, with "Live from IPY" calls, Internet presentations, and podcasts from the field, daily teacher journals, interactive bulletin boards, photo galleries, online multimedia learning resources and activities, and participation in CARE (Connecting Arctic/Antarctic Researchers and Educators) web-meetings to support translation of experiences into the classroom and beyond. PolarTREC is relevant to the education goals of the IPY by 1) providing a hands-on field research experience that can be realistically implemented in the polar regions; 2) broadly disseminating teacher experiences to students and other professionals; 3) developing a sustainable learning community; and 4) providing clear and appropriate measures of project success through a formative and summative evaluation. Additionally, the PolarTREC evaluation will provide a basis for replicating or expanding the program structure and best practices. PolarTREC will benefit from close coordination with logistics providers and international programs to ensure operational feasibility and an international reach.
DATE: -
TEAM MEMBERS: Janet Warburton Wendy Warnick
resource research Professional Development, Conferences, and Networks
These opening remarks took place at the start of the Citizen Science Toolkit Conference, held at the Cornell Lab of Ornithology in Ithaca, New York on June 20-23, 2007.
DATE:
TEAM MEMBERS: Cornell Laboratory of Ornithology
resource research Professional Development, Conferences, and Networks
This presentation is one of three focus point presentations delivered on day one of the Citizen Science Toolkit Conference (at the Cornell Lab of Ornithology in Ithaca, New York on June 20-23, 2007) as part of the opening session titled “Citizen Science Challenges and Opportunities.” Vaughan discusses the importance of citizen science. He describes the Ecological Management and Assessment Network (EMAN), which he coordinates, and shares lessons learned.
DATE:
TEAM MEMBERS: Hague Vaughan
resource research Professional Development, Conferences, and Networks
This is the opening talk of the session titled "Community Building for Citizen Science," delivered on day three of the Citizen Science Toolkit Conference at the Cornell Lab of Ornithology in Ithaca, New York on June 20-23, 2007. Linda Green, of the University of Rhode Island Cooperative Extension USDA-CSREES Volunteer Water Quality National Facilitation Project, discusses community-based monitoring programs. Green shares successes and challenges associated with these programs and provides useful examples throughout the discussion.
DATE:
TEAM MEMBERS: Linda Green
resource research Professional Development, Conferences, and Networks
These reports were delivered on day three at the conclusion of the Citizen Science Toolkit Conference at the Cornell Lab of Ornithology in Ithaca, New York on June 20-23, 2007. The reports summarize the discussions that took place in five separate breakout groups, which met periodically throughout the conference to focus on key Citizen Science themes and topics that emerged during conference presentations and plenary discussions.
DATE:
TEAM MEMBERS: Cornell Lab of Ornithology Catherine McEver Nolan Doesken Geoff LeBaron Sarah Kirn Rebecca Jordan Maureen McConnell
resource research Professional Development, Conferences, and Networks
This presentation by Sam Droege was delivered as the opening talk for the Citizen Science Toolkit Conference at the Cornell Lab of Ornithology in Ithaca, New York on June 20-23, 2007. This presentation was also delivered at the first conference session, “Citizen Science Challenges and Opportunities.” Droege addresses the value of citizen scientists, volunteer data quality, data management, and lessons learned.
DATE:
TEAM MEMBERS: Sam Droege