Skip to main content

Community Repository Search Results

resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will research core methods of science documentary film production and impact on audience engagement and understanding. The findings from this study will be used to later produce a film on how the CRISPR genome editing technology will shape agriculture, ecology, and the natural world. The research study and film to be produced will be a collaboration of science communication practitioners and researchers. The intended outcomes are to improve effective science filmmaking and increase impact on audiences. Many people rely on documentary film and videos for science information outside of formal learning environments. Research has shown that video programming can reduce knowledge gaps between those of higher and lower levels of education. But there is little research with findings about what makes a particular style of storytelling effective for engagement and learning outcomes. A recent report of the National Academies of Sciences, Engineering and Medicine identified a significant shortage of social science research with directly applicable lessons for filmmakers. This project addresses this need by providing new frameworks for research and methods to produce science documentaries. Project partners are iBiology, a producer of video resources for learning, and science communication researchers at the University of Wisconsin-Madison.

This project will examine two key questions: 1) In a science documentary film, how does the diversity of the scientists profiled and the use of a narrator shape audiences? perception of content and scientists? and 2) What are effective methods in science filmmaking to visualize the invisible (i.e. explain scientific phenomena that are not easily visualized)? The project begins by testing a recently produced film, Human Nature, that tells the story of the discovery of CRISPR (genome editing), told by the scientists who led the effort. Phase 1 testing will include screenings, focus groups, and experiments run through Amazon Mechanical Turk to test what features of the film (editorial voice and visualization styles) are most effective for communicating scientific content. In Phase 2 video test clips will be produced using a combination of narration and visualization strategies. An experimental design run through Amazon Turk will randomly assign participants to watch a clip using different combinations. Researchers will use this data to parse out what effect seems to be related to particular narration and visualization choices. This quantitative experimental data will be supplemented by qualitative data from focus groups with participants with a diverse range of science experience and demographic backgrounds. Researchers will design a survey-embedded experiment with a U.S. nationally representative sample to see how well the findings translate and change in a broader population.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Dietram Scheufele Sarah Goodwin Elliot Kirschner
resource evaluation Media and Technology
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science of soundscape ecology analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater show, group activities, and websites. All components are designed with both sighted and visually impaired students in mind. Multimedia
DATE:
TEAM MEMBERS: Barbara Flagg Allan Brenman
resource project Media and Technology
The Global Soundscapes! Big Data, Big Screens, Open Ears Project uses the new science of soundscape ecology to design a variety of informal science learning experiences that engage participants through acoustic discovery Soundscape ecology is an interdisciplinary science that studies how humans relate to place through sound and how humans influence the environment through the alteration of natural sound composition. The project includes: (1) an interface to the NSF-funded Global Sustainable Soundscapes Network, which includes 12 universities around the world; (2) sound-based learning experiences targeting middle-school students (grades 5-8), visually impaired and urban students, and the general public; and (3) professional development for informal science educators. Project educational components include: the first interactive, sound-based digital theater experience; hands-on Your Ecosystem Listening Labs (YELLS), a 1-2 day program for school classes and out-of school groups; a soundscape database that will assist researchers in developing a soundscape Big Database; and iListen, a virtual online portal for learning and discovery about soundscape. The project team includes Purdue-based researchers involved in soundscape and other ecological research; Foxfire Interactive, an award-winning educational media company; science museum partners with digital theaters; the National Audubon Society and its national network of field stations; the Perkins School for the Blind; and Multimedia Research (as the external evaluator).
DATE: -
TEAM MEMBERS: Bryan Pijanowski Daniel Shepardson Barbara Flagg
resource project Media and Technology
Hidden Universe is a multi-faceted project built around production of a 2D/3D giant screen film. The goal is to inspire, engage, and excite viewers about the mysterious worlds hidden around us and the science and technology that reveal them. The film will illuminate natural wonders that are invisible to the naked eye, such as objects and processes that are too slow, too fast, and too small to be seen without advanced technologies. It will include nanoscience and microbiology research and developing wavelength technologies such as ultrafast lasers. The project will employ cutting-edge technology to bring arresting footage of micro- and nanobiology to the giant screen to offer audiences (1) deeper understanding of natural phenomena that comes through observation and (2) greater appreciation of modern technology that makes such observation possible. The film story will focus on demonstrating science as inquiry and underscore the crucial link between scientific inquiry and technological advances. The film project will be enhanced with educational outreach materials, professional development opportunities for educators, and an interactive website. Hidden Universe will be produced by the large format team at National Geographic's Cinema Ventures group and its production partner Blacklight Films. The project brings to the table the extensive resources of the National Geographic Society. In addition, the project will partner with a select group of scientific research centers (Chester Carlson Center for Imaging Science at the Rochester Institute of Technology and the Nanobiotechnology Center at Cornell) and leaders in informal education (Boston Museum of Science and Girl Scouts) to extend the reach and impact of the project. The project will add to its list of partners by working with the D.C. Public Schools and Teach for America to find new ways to intersect with teachers and students in underserved areas. The project will employ Multimedia Research and Knight-Williams Research Communications to conduct the project\'s formative and summative evaluations, respectively.
DATE: -
TEAM MEMBERS: Lisa Truitt Barbara Flagg
resource project Media and Technology
This is a comprehensive project about the science behind special effects in the motion pictures. WGBH, in association with eighteen museums in the Museum Film Network, will produce a 35 minute IMAX/OMNIMAX film showing the behind-the-scenes story of a group of filmmakers at Industrial Light and Magic (ILM) as they create a special effects sequence in the IMAX/OMNIMAX format. The film will illustrate how the eye and brain work together to process cinematic illusions. The California Museum of Science and Industry (CMSI) will create a 6,000 sq. ft. traveling exhibit that will focus on the science and technical processes of special effect. The exhibit will travel to fifteen other museums. A smaller scale lobby exhibit also will be developed for display in the cueing areas of IMAX/OMNIMAX theaters that are showing the "Special Effects" film. A collaborative educational outreach program will extend the reach of both the film and exhibit. The project will be managed by the NOVA production unit at WGBH under the direction of Paula Apsell. Ms. Apsell also will serve as Executive Producer for the IMAX/OMNIMAX film. Diane Perlov, Curator of Exhibitions at CMSI, will supervise the exhibit portion of the project. Kenneth Phillips, Curator of Aerospace Science at CMSI, will develop video interactives and oversee scientific content of the exhibit. Carol Valenta, Director of Education for CMSI, and Beth Kirsh, Director of Educational Print and Outreach for WGBH, will be responsible for implementing the outreach plan. Advisors for the project include David H. Hubel, neurobiologist, Harvard Medical School; Vilayanur S. Ramachandran, neurophysiologist, University of California, San Diego; Richard Gregory, perception psychologist, University of Bristol; Sally Duensing, Science and Museum Liaison, Exploratorium; Elizabeth Stage, Co-Director for Science, New Standards Project, National Center on Education and the Economy; and Robert Coutts, high school physics teacher, Los Angeles, CA.
DATE: -
TEAM MEMBERS: Paula Apsell Susanne Simpson Ann Muscat Carol Valenta Barbara Flagg
resource project Media and Technology
The Reuben H. Fleet Space Center is developing "The Search for Infinity," a large-format film on mathematics and nature. The current concept, based on a film idea developed in collaboration with Sir Arthur C. Clarke, is to center the film on an intelligent computer running an unmanned space probe. By following the actions of the computer, audiences will learn about mathematical fractals and the relationships between fractals and the natural world. A key effect planned for the film will be a prolonged zoom into the endless details of the celebrated Mandelbrot Set fractal. Jeffrey Kirsch, Director of the Reuben H. Fleet Space Center, will be PI and Executive Producer for the film. The Co-Executive Producer will be Christina Schmidlin, Vice-President of XAOS, Inc, one of the world's leading computer graphics studios, and the Producer-Director will be Ronald Fricke. This production team will work with Sir Arthur Clarke to write the treatment for the film. Scientists working directly in the pre-production phase of the project include Ian Stewart, Professor of Mathematics at the University of Warwick, and Rudy Rucker of San Jose State University. Other advisors include: Benoit Mandelbrot, Yale University; Maxine Brown, University of Illinois at Chicago; Bernard Pailthorpe, San Diego Supercomputer Center; and David Brin, Science Fiction author and astrophysicist. During this planning phase the project will: (1) identify subjects that are best suited to illustrate the fractal geometry of nature in large format film; (2) conduct front-end evaluation to assess the potential educational benefits of such a film; (3) write a treatment and develop a storyboard for the film; conduct formative evaluation of the treatment; (4) produce a motion picture sequence to demonstrate the educational power of the large format film medium to convey complicated ideas related to computer processes; and (5) develop interactive web-based activity concepts to exploit the film's distribution in the museum-dominated large format film community.
DATE: -
TEAM MEMBERS: Jeffrey Kirsch