Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource research Informal/Formal Connections
Public trust in agricultural biotechnology organizations that produce so-called ‘genetically-modified organisms’ (GMOs) is affected by misinformed attacks on GM technology and worry that producers' concern for profits overrides concern for the public good. In an experiment, we found that reporting that the industry engages in open and transparent research practices increased the perceived trustworthiness of university and corporate organizations involved with GMOs. Universities were considered more trustworthy than corporations overall, supporting prior findings in other technology domains
DATE:
TEAM MEMBERS: Asheley Landrum Joseph Hilgard Robert Lull Heather Akin Kathleen Hall Jamieson
resource research Media and Technology
Digital Observation Technology Skills (DOTS) is a framework for integrating modern, mobile technology into outdoor, experiential science education. DOTS addresses longstanding tensions between modern technology and classical outdoor education by carefully selecting appropriate digital technology for educational purposes and by situating these tools in classical experiential pedagogy.
DATE:
TEAM MEMBERS: R. Justin Hougham Marc Nutter Caitlin Graham
resource project Public Programs
This project will make synthetic biology activities accessible to high school students and teachers by providing them with an authentic but safe context to learn. These activities will also broaden their understanding and perspectives about how synthetic biology and bioengineering is used in personal, health, and food production contexts as well as raise their interest in STEM. The design of bioMAKERlab will generate an educational version of an existing professional-grade lab for synthetic biology to promote safe production, accessibility, and affordability for high schools and community colleges interested in integrating such wetlab activities into their curriculum.

Most current efforts to broaden access to maker activities for K-12 students have focused on developing collaborative fabrication workspaces (fablabs) involving 3D printers, laser cutters, and other digital and traditional tools. This project will develop and implement bioMAKERlab, an innovative wetlab starter kit and activities that will enable high school students and teachers to engage in synthetic biology by building genetic circuits that let microorganisms change color, smell, and shape. In synthetic biology, participants make their own DNA--gene by gene--and then grow their designs into real applications by inserting them into microorganisms to develop different traits and characteristics provided by the genes. The project will involve students from a Philadelphia public high school and young people participating in weekend workshops at The Franklin Institute, a Philadelphia-based science museum.

This project is a part of NSF's Maker Dear Colleague Letter portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering, Education and Human Resources, and Engineering.
DATE: -
TEAM MEMBERS: Yasmin Kafai Orkan Telhan
resource research Media and Technology
Communicating modern biotechnologies is certainly no easy task. To tackle such a complex and future-oriented assignment, help may arrive, paradoxically, from the past, from ancient rhetorical tradition, and in particular from Aristotle, the most renowned rhetoric teacher of all time. In his Rhetoric, Aristotle suggested that to be persuasive speakers should make use of widely accepted opinions (endoxa), i.e. the common sense shared by all. Common sense is expressed in common truths and value-laden maxims. Common sense, however, is not flat but dialectical, in that it includes contrasting
DATE:
TEAM MEMBERS: Eugenio Borrelli
resource project Professional Development, Conferences, and Networks
The National Writing Project (NWP) is collaborating with the Association of Science-Technology Centers (ASTC) on a four-year, full-scale development project that is designed to integrate science and literacy. Partnerships will be formed between NWP sites and ASTC member science centers and museums to develop, test, and refine innovative programs for educators and youth, resulting in the creation of a unique learning network. The project highlights the critical need for the integration of science and literacy and builds on recommendations in the Common Core State Standards and the National Research Council's publication, "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The content focus includes current topics in science and technology such as environmental science, sustainability, synthetic biology, geoengineering, and other subjects which align with science center research and exhibits. The project design is supported by a framework that incorporates a constructivist/inquiry-based approach that capitalizes on the synergy between rigorous science learning and robust literacy practices. Project deliverables include a set of 10 local partnership sites, professional development for network members, a project website, and an evaluation report highlighting lessons learned. Partnership sites will be selected based on interest, proximity, history, and expertise. Two geographically and demographically diverse cohorts, consisting of five partnerships each will be identified in Years 2 and 3. Each set of partners will be charged with creating a comprehensive two-year plan for science literacy activities and products to be implemented at local sites. It is anticipated that the pilot programs may result in the creation of new programs that merge science and writing, integrate writing into existing museum science programs, or integrate science activities into existing NWP programs. Interest-driven youth projects such as citizen science and science journalism activities are examples of programmatic approaches that may be adopted. The partners will convene periodically for planning and professional development focused on the integration of science and literacy for public and professional audiences, provided in part by national practitioners and research experts. A network Design Team that includes leadership representatives from NWP, ASTC, and the project evaluator, Inverness Research, Inc., will oversee project efforts in conjunction with a national advisory board, while a Partnership Coordinator will provide support for the local sites. Inverness Research will conduct a multi-level evaluation to address the following questions: -What is the nature and quality of the local partner arrangements, and the larger network as a whole? -What is the nature and quality of the local science literacy programs that local partners initiate, and how do they engage local participants, and develop their sense of inquiry and communication skills? First, a Designed-Based Implementation Research approach will be used for the developmental evaluation to assess the implementation process. Next, the documentation and portrayal phase will assess the benefits to youth, educators, institutions, and the field using surveys, interviews, observations of educators, and reviews of science communication efforts created by youth. Finally, the summative evaluation includes a comprehensive portfolio of evidence to document the audience impacts and an independent assessment of the project model by an Evaluation Review Board. This project will result in the creation of a robust learning community while contributing knowledge and lessons learned to the field about networks and innovative partnerships. It is anticipated that formal and informal educators will gain increased knowledge about science and literacy programs and develop skills to provide effective programs, while youth will demonstrate increased understanding of key science concepts and the ability to communicate science. Programs created by the local partnerships will serve approximately 650 educators (450 informal educators and 200 K-12 teachers) and 500 youth ages 9-18. Plans for dissemination, expansion, and sustainability will be undertaken by the sub-networks of the collaborating national organizations drawing on the 350 ASTC member institutions and nearly 200 NWP sites at colleges and universities.
DATE: -
resource project Media and Technology
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
DATE: -
TEAM MEMBERS: Rutgers University Carrie Ferraro
resource research Media and Technology
This report from the National Research Council explores how learning changes the physical structure of the brain, how existing knowledge affects what people notice and how they learn, the amazing learning potential of infants, and the relationship between classroom learning and learning in everyday settings such as community and the workplace. It identifies learning needs and opportunities for teachers and provides a realistic look at the role of technology in education.
DATE:
TEAM MEMBERS: National Research Council
resource project Media and Technology
The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
DATE: -
TEAM MEMBERS: Lisa Gugenheim
resource research Informal/Formal Connections
The article presents a lesson plan for eighth-grade students on neuromuscular control and biomedical engineering based on the engineering and design of prosthetic hands.
DATE:
TEAM MEMBERS: Justin Ryan David Frakes Tirupalavanam Ganesh Christine Zwart
resource project Public Programs
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE: -
TEAM MEMBERS: Andre Nel Yoram Cohen Hilary Godwin Arturo Keller Patricia Holden
resource project Media and Technology
SciGirls CONNECT is a broad national outreach effort to encourage educators, both formal and informal, to adopt new, research-based strategies to engage girls in STEM. SciGirls (pbskids.org/scigirls) is an Emmy award-winning television program and outreach program that draws on cutting-edge research about what engages girls in science, technology, engineering and math (STEM) learning and careers. The PBS television show, kids' website, and educational outreach program have reached over 14 million girls, educators, and families, making it the most widely accessed girls' STEM program available nationally. SciGirls' videos, interactive website and hands-on activities work together to address a singular but powerful goal: to inspire, enable, and maximize STEM learning and participation for all girls, with an eye toward future STEM careers. The goal of SciGirls is to change how millions of girls think about STEM. SciGirls CONNECT (scigirlsconnect.org) includes 60 partner organizations located in schools, museums, community organizations and universities who host SciGirls clubs, camps and afterschool programs for girls. This number is intended grow to over 100 by the end of the project in 2016. SciGirls CONNECT provides mini-grants, leader training and educational resources to partner organizations. Each partner training session involves educators from a score of regional educational institutions. To date, over 700 educators have received training from over 250 affiliated organizations. The SciGirls CONNECT network is a supportive community of dedicated educators who provide the spark, the excitement and the promise of a new generation of women in STEM careers. Through our partner, the National Girls Collaborative Project, we have networked educational organizations hosting SciGirls programs with dozens of female role models from a variety of STEM fields. The SciGirls CONNECT website hosts monthly webinars, a quarterly newsletter, gender equity resources, SciGirls videos and hands-on activities. SciGirls also promotes the television, website and outreach program to thousands of elementary and middle school girls and their teachers both locally and nationally at various events.
DATE: -
TEAM MEMBERS: Rita Karl