Skip to main content

Community Repository Search Results

resource project Media and Technology
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences.

Twin Cities Public Television project on Gender Equitable Teaching Practices in Career and Technical Education Pathways for High School Girls is designed to help career and technical education educators and guidance counselors recruit and retain more high school girls from diverse backgrounds in science, technology, engineering and math (STEM) pathways, specifically in technology and engineering. The project's goals are: 1) To increase the number of high school girls, including ethnic minorities, recruited and retained in traditionally male -STEM pathways; 2) To enhance the teaching and coaching practices of Career and Technical Education educators, counselors and role models with gender equitable and culturally responsive strategies; 3) To research the impacts of strategies and role model experiences on girls' interest in STEM careers; 4) To evaluate the effectiveness of training in these strategies for educators, counselors and role models; and 5) To develop training that can easily be scaled up to reach a much larger audience. The research hypothesis is that girls will develop more positive STEM identities and interests when their educators employ research-based, gender-equitable and culturally responsive teaching practices enhanced with female STEM role models. Instructional modules and media-based online resources for Minnesota high school Career and Technical Education programs will be developed in the Twin Cities of Minneapolis and St. Paul and piloted in districts with strong community college and industry partnerships. Twin Cities Public Television will partner with STEM and gender equity researchers from St. Catherine University in St. Paul, the National Girls Collaborative, the University of Colorado-Boulder (CU-Boulder), the Minnesota Department of Education and the Minnesota State Colleges and Universities System.

The project will examine girls' personal experiences with equitable strategies embedded into classroom STEM content and complementary mentoring experiences, both live and video-based. It will explore how these experiences contribute to girls' STEM-related identity construction against gender-based stereotypes. It will also determine the extent girls' exposure to female STEM role models impact their Career and Technical Education studies and STEM career aspirations. The study will employ and examine short-form autobiographical videos created and shared by participating girls to gain insight into their STEM classroom and role model experiences. Empowering girls to respond to the ways their Career and Technical Education educators and guidance counselors guide them toward technology and engineering careers will provide a valuable perspective on educational practice and advance the STEM education field.
DATE: -
TEAM MEMBERS: Rita Karl Brenda Britsch Siri Anderson
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project Media and Technology
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
DATE: -
TEAM MEMBERS: Leigh Peake
resource project Media and Technology
Purpose: This project will develop and test Happy Atoms, a physical modeling set and an interactive iPad app for use in high school chemistry classrooms. Happy Atoms is designed to facilitate student learning of atomic modeling, a difficult topic for chemistry high school students to master. Standard instructional practice in this area typically includes teachers using slides, static ball and stick models, or computer-simulation software to present diagrams on a whiteboard. However, these methods do not adequately depict atomic interactions effectively, thus obscuring complex knowledge and understanding of their formulas and characteristics.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of a physical modeling set including a computerized ball and stick molecular models representing the first 17 elements on the periodic table and an iPad app that identifies and generates information about atoms. A pilot study at the end of Phase I tested the prototype with 187 high school students in 12 chemistry classes. Researchers found that the prototype functioned as intended. Results showed that 88% of students enjoyed using the prototype, and that 79% indicated that it helped learning. In Phase II, the team will develop additional models and will strengthen functionality for effective integration into instructional practice. After development is complete, a larger pilot study will assess the usability and feasibility, fidelity of implementation, and promise of Happy Atoms to improve learning. The study will include 30 grade 11 chemistry classrooms, with half randomly assigned to use Happy Atoms and half who will continue with business as usual procedures. Analyses will compare pre-and-post scores of student's chemistry learning, including atomic modeling.

Product: Happy Atoms will include a set of physical models paired with an iPad app to cover high school chemistry topics in atomic modeling. The modeling set will include individual plastic balls representing the elements of the periodic table. Students will use an iPad app to take a picture of models they create. Using computer-generated algorithms, the app will then identify the model and generate information about its physical and chemical properties and uses. The app will also inform students if a model that is created does not exist. Happy Atoms will replace or supplement lesson plans to enhance chemistry teaching. The app will include teacher resources suggesting how to incorporate games and activities to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Jesse Schell
resource evaluation Media and Technology
From October 2015 to July 2016, Smart Start Evaluation & Research conducted a formative evaluation of a full-length film festival cut of the film The Anthropologist in order to provide feedback that improves decision-making capacity for the film’s final edit, production design, and distribution strategies in line with the project’s goals (see p. 5). SmartStart conducted focus group interviews with participants to 1) measure their initial impressions of the film and its content, and 2) provide feedback on content, edits, target audience, website, and ideas for distribution. SmartStart then
DATE:
TEAM MEMBERS: Seth Kramer Lisa Kohne Joshua Penman Erica Watson Dayo Majekodunmi
resource evaluation Media and Technology
This is the final evaluation report for the Skynet Junior Scholars Project from the External Evaluator, David Beer.
DATE:
TEAM MEMBERS: Sue Ann Heatherly David Beer
resource research Media and Technology
In this article, we present three challenges to the emerging Open Science (OS) movement: the challenge of communication, collaboration and cultivation of scientific research. We argue that to address these challenges OS needs to include other forms of data than what can be captured in a text and extend into a fully-fledged Open Media movement engaging with new media and non-traditional formats of science communication. We discuss two cases where experiments with open media have driven new collaborations between scientists and documentarists. We use the cases to illustrate different advantages
DATE:
TEAM MEMBERS: Kristian Moltke Martiny David Budtz Pedersen Alfred Birkegaard
resource project Media and Technology
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE: -
TEAM MEMBERS: Julia Parrish Marco Hatch Selina Heppell
resource research Media and Technology
Peter Weingart and Lars Guenther suggest that the public's trust in science has become endangered due to a new ecology of science communication. An implicit theoretical base of their argument is that the integrity of science as an institution depends on the integrity of science as a profession. My comment aims to reconstruct and question this specific institutional understanding of science. I argue that rust in technologies of knowledge production might be a potential equivalent to trust in professions.
DATE:
TEAM MEMBERS: Sascha Dickel
resource research Media and Technology
The mixed methods randomized experimental study assessed a model of engagement and education that examined the contribution of SciGirls multimedia to fifth grade girls’ experience of citizen science. The treatment group (n = 49) experienced 2 hours of SciGirls videos and games at home followed by a 2.5 hour FrogWatch USA citizen science session. The control group (n = 49) experienced the citizen science session without prior exposure to SciGirls. Data from post surveys and interviews revealed that treatment girls, compared to control girls, demonstrated significantly greater interest in their
DATE:
TEAM MEMBERS: Barbara Flagg
resource project Media and Technology
Through the NSF Innovation Corps for Learning Program, (I-Corps L), this project will develop ways to enable the SciStarter program to extend the promise of citizen science by connecting millions of citizen scientists with scientists in need of their help through formal and informal research projects. Citizen science is a fast growing field that engages the public in scientific inquiry through data collection projects and environmental monitoring using sensors, mini spectrometers, water testing kits and other tools. A challenge for the citizen science community has been access to the tools required to collect the types of data needed in citizen science projects. SciStarter facilitates broader participation in citizen science by reducing the barrier for volunteers to identify, acquire, and use the right scientific tools and instruments for each project. This I-Corps for Learning project will develop approaches to enable SciStarter to provide a larger number of citizen scientists with easier access to required and recommended instruments needed for meaningful participation in citizen science projects.

SciStarter aims to provide a holistic solution to the needs of citizen scientists that includes projects, support, and products such as training materials and consulting. SciStarter can be a catalyst in citizen science by connecting people to opportunities to engage and in lowering barriers to public participation in scientific research while creating a hybrid academic-consumer sustainability model. A central focus of this current effort will be establishing a sustainable and scalable means of enabling citizen scientists to obtain equipment and instruments in an efficient and cost-effective manner. The project will make use of elements already in place to expand the engagement of citizen scientists in new or multiple projects, to empower citizens in the process of citizen science, and to provide a useful, scalable and sustainable solution for scientists leading citizen science research projects. The extension of SciStarter will set the stage for greater inclusion of previously marginalized groups in citizen science activities and will extend to all forms of public engagement in science.
DATE: -
TEAM MEMBERS: Darlene Cavalier Micah Lande
resource project Media and Technology
The proposed project, which will build upon a successful NSF EAGER grant, will help arctic researchers explain the significance of their research widely to the general public which, in today's technologically connected world means not only in the U.S., but worldwide- and to reflect the diversity of the scientific enterprise Alaska. As proposed, the current Frontier Scientist's schedule of science reporting will be enhanced by a broadcast TV series titled Frontier Scientists to engage a larger viewing audience. A 'Do It Yourself' (DIY) component will help scientists to create their, professional-caliber media that will sustain the publics' interest and feedback in their research. An evaluation regime will insure appropriate quality and depth of communication, throughout the lifecycle of each science story.
DATE: -
TEAM MEMBERS: Liz OConnell Robert McCoy Gregory Newby