Skip to main content

Community Repository Search Results

resource research Public Programs
This study was designed to explore the chemistry outreach practices of college students associated with the American Chemical Society (ACS) and Alpha Chi Sigma (ΑΧΣ). Students affiliated with these organizations are heavily involved with the chemistry-specific informal science education practice of chemistry outreach. Despite reporting that they reach almost 1 million people every year through outreach, little is known about their outreach practices. Two investigations were conducted to address the gap in understanding of college students conducting outreach. The first investigation involved
DATE:
TEAM MEMBERS: Justin Pratt
resource research Public Programs
Chemistry-specific informal science education (chemistry outreach) is widely practiced across all levels of the chemistry community. College students associated with American Chemical Society and Alpha Chi Sigma collegiate chapters are one population of chemistry outreach practitioners who reach upward of 1 million people every year. Previous studies of this population have characterized their goals/purposes for conducting outreach, their understanding of the chemistry content underlying common demonstrations/activities, as well as their teaching and learning beliefs that they bring to their
DATE:
TEAM MEMBERS: Justin Pratt Ellen Yezierski
resource research Public Programs
College students associated with the American Chemical Society and Alpha Chi Sigma student/collegiate chapters reach almost 1 million people every year through their informal chemistry education events (chemistry outreach). Previous work has characterized their goals for chemistry outreach, with the most prevalent goal being audience learning. With such large audiences being impacted every year and the goal of audience learning, investigating how these college students approach teaching in informal environments is needed to further understand chemistry outreach practices. This paper presents
DATE:
TEAM MEMBERS: Justin Pratt Ellen Yezierski
resource research Public Programs
Informal chemistry education/chemistry outreach is ubiquitous with the chemical enterprise. However, little research has focused on the planning, implementation, or evaluation of these events. Results from a previous study suggest that college students involved with collegiate chapters of the American Chemical Society and Alpha Chi Sigma are heavily involved with chemistry outreach, and their most frequently discussed purpose is to teach chemistry content to their audiences. Given this goal, it is timely to investigate how well these college students, who are acting as teachers in outreach
DATE:
TEAM MEMBERS: Justin Pratt Ellen Yezierski
resource research Public Programs
Little scholarly investigation of chemistry outreach carried out by undergraduate students in schools and communities has occurred despite widespread practice and monetary investment by large national and international organizations. This study provides the first investigation of these fairly uncharted waters by characterizing expected outcomes of outreach events, the types of activities and chemistry content widely practiced, and how outreach practitioners evaluate the success of events. Results from an open-ended survey deployed nationally to college students and faculty/staff members
DATE:
TEAM MEMBERS: Justin Pratt Ellen Yezierski
resource project Public Programs
Non-Technical

Lack of diversity in science and engineering education has contributed to significant inequality in a workforce that is responsible for addressing today's grand challenges. Broadening participation in these fields will promote the progress of science and advance national health, prosperity and welfare, as well as secure the national defense; however, students from underrepresented groups, including women, report different experiences than the majority of students, even within the same fields. These distinctions are not caused by the students' ability, but rather by insufficient aspiration, confidence, mentorship, instructional methods, and connection and relevance to their cultural identity. The long-term vision of this project is to amplify the impact of a successful broadening participation model at the University of Maine, the Stormwater Research Management Team (SMART). This program trains students and mentors in using science and engineering skills and technology to research water quality in their local watershed. Students engage in numerous science and technology fields: engineering design, data acquisition, analysis and visualization, chemistry, environmental science, biology, and information technology. Students also connect with a diversity of professionals in water and engineering in government, private firms and non-profits. SMART has augmented the traditional science and engineering classroom by engaging students in guided mentored apprenticeships that address community problems.

Technical

This pilot project will form a collaborative and define a strategic plan for scale-up to a national alliance to increase the long-term success rate of underrepresented minority students in science, engineering, and related fields. The collaborative of multiple and varied organizations will align to collectively contribute time and resources to a pre-college educational pathway. There are countless isolated programs that offer short-term interventions for underrepresented and minority students; however, there is lack of organizational coordination for aligning current program offerings, sharing best practices, research results or program outcomes along the education to workforce pathway. The collaborative activities will focus on the transition grades (e.g., 4-5, 8, and high school) and emphasize relationships among skills, confidence, culture and future careers. Collaborative partners will establish a centralized infrastructure in each location to coordinate recruiting of invested community leaders, educators, and parents, around a common agenda by designing, deploying and continually assessing a stormwater-themed project that addresses their location and demographic specific needs. This collaborative community will consist of higher education faculty and students, K-12 students, their caregivers, mentors, educators, stormwater districts, state and national environmental protection agencies, departments of education, and other for-profit and non-profit organizations. The collaborative will address the need for research on mechanisms for change, collaboration, and negotiation regarding the greater participation of under-represented groups in the science and technology workforce.
DATE: -
TEAM MEMBERS: Mohamed Musavi Venkat Bhethanabotla Cary James Vemitra White Lola Brown
resource research Media and Technology
In this chapter we present the ways in which institutional cultural differences impact the development and implementation of learning activities in informal settings. Five university-based centers for the study of chemistry worked with informal learning professionals to re-envision educational and public outreach activities about science. The projects were part of a broader effort to catalyze new thinking and innovation in informal education and chemistry centers. The set of projects illustrates the broad possibilities for informal learning settings, with projects targeting diverse audiences
DATE:
resource evaluation Public Programs
The CSMC-OMSI Partnership for Public Engagement (COPPE) project was developed to establish a strong and long-lasting partnership between the Center for Sustainable Materials Chemistry (CSMC) and the Oregon Museum of Science and Industry (OMSI). Through participation in this project, COPPE researchers and OMSI educators sought a deeper understanding of each other's profession while simultaneously developing a suite of Informal Science Education (ISE) outreach programs that engage the public in new and enduring ways. These new ISE platforms were developed to enhance public awareness in the areas
DATE:
TEAM MEMBERS: Oregon Museum of Science and Industry Anne Sinkey
resource evaluation Public Programs
The attached document describes the results of evaluation of affective and cognitive impact of the Fusion Science Theater show model. Affective gains were measured by post-show questionnaires and cognitive gains were measured by having audience members vote for their prediction to the investigation question before and after the "lesson" of the show. Appendix includes instruments.
DATE:
TEAM MEMBERS: Madison Area Technical College Dr. Joanne Cantor
resource project Public Programs
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE: -
TEAM MEMBERS: Andre Nel Yoram Cohen Hilary Godwin Arturo Keller Patricia Holden
resource project Public Programs
The Nanoscale Science and Engineering Center entitled New England Nanomanufacturing Center for Enabling Tools is a partnership between Northeastern University, the University of Massachusetts Lowell, the University of New Hampshire, and Michigan State University. The NSEC unites 34 investigators from 9 departments. The NSEC is likely to impact solutions to three critical and fundamental technical problems in nanomanufacturing: (1) Control of the assembly of 3D heterogeneous systems, including the alignment, registration, and interconnection at three dimensions and with multiple functionalities, (2) Processing of nanoscale structures in a high-rate/high-volume manner, without compromising the beneficial nanoscale properties, (3) Testing the long-term reliability of nano components, and detect, remove, or prevent defects and contamination. Novel tools and processes will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanorods, and proteins) and polymer nanostructures. This Center will contribute a fundamental understanding of the interfacial behavior and forces required to assemble, detach, and transfer nanoelements, required for guided self-assembly at high rates and over large areas. The Center is expected to have broader impacts by bridging the gap between scientific research and the creation of commercial products by established and emerging industries, such as electronic, medical, and automotive. Long-standing ties with industry will also facilitate technology transfer. The Center builds on an already existing network of partnerships among industry, universities, and K-12 teachers and students to deliver the much-needed education in nanomanufacturing, including its environmental, economic, and societal implications, to the current and emerging workforce. The collaboration of a private and two public universities from two states, all within a one hour commute, will lead to a new center model, with extensive interaction and education for students, faculty, and outreach partners. The proposed partnership between NENCET and the Museum of Science (Boston) will foster in the general public the understanding that is required for the acceptance and growth of nanomanufacturing. The Center will study the societal implications of nanotechnology, including conducting environmental assessments of the impact of nanomanufacturing during process development. In addition, the Center will evaluate the economic viability in light of environmental and public health findings, and the ethical and regulatory policy issues related to developmental technology.
DATE: -
TEAM MEMBERS: Ahmed Busnaina Nicol McGruer Glen Miller Carol Barry Joey Mead
resource project Public Programs
Communicating Ocean Sciences to Informal Audiences (COSIA) is an innovative project that creates unique partnerships between informal science education institutions and local colleges conducting research in ocean sciences, with an emphasis on earth, biological and geochemical sciences. The project enables over 100 undergraduate and graduate students that are enrolled in the Communicating Ocean Sciences college course to create engaging learning activities and teaching kits in conjunction with their informal education partners. Institutional teams include: Long Beach Aquarium and California State University-Long Beach; Hatfield Marine Science Center and Oregon Sea Grant at Oregon State University; Virginia Aquarium and Science Center and Hampton University; Liberty Science Center and Rutgers University; and Lawrence Hall of Science and University of California-Berkeley. Students learn valuable outreach skills by providing visiting families and children with classes, guided tours and interactive learning experiences. Deliverables include a three-day partner workshop, a series of COSIA Handbooks (Collaboration Guide, Informal Education Guide and Outreach Guide), an Informal Science Education Activities Manual and Web Bank of hands-on activities. Strategic impact will be realized through the creation of partnerships between universities and informal science education institutions and capacity building that will occur as informal science institutions create networks to support the project. It is also anticipated the evaluation outcomes will inform the field abut the benefits of museum and university partnerships. The project will impact more than 30,000 elementary and middle school children and their families, as well as faculty, staff and students at the partnering institutions.
DATE: -
TEAM MEMBERS: Catherine Halversen Craig Strang