Skip to main content

Community Repository Search Results

resource project Exhibitions
Boston Museum of Science seeks funds from the National Science Foundation for the development of a group of interactive exhibits and educational programs that will comprise the Museum's permanent TESTING THE THEORY activity center. The project is part of a new approach to exhibits that aims to make the experiences available to visitors closer to the actual process of scientific discovery. Visitors will carry out experiments in fields ranging from chemistry and cognitive psychology, to statistics, optics, and materials science. The focus will be on promoting specific experimental skills and scientific habits of mind, and on encouraging the transfer of these skills to everyday activities. The exhibit techniques developed during the prototyping and production of TESTING THE THEORY are expected to be of importance to science museums and others concerned with increasing science literacy.
DATE: -
resource project Professional Development, Conferences, and Networks
The Louisville Science Center will develop "The World We Create", a 13,000 sq. ft. exhibit which will transform their second floor to an active learning environment where visitors can explore the simplest element of the creative process to the most sophisticated networks available to our society. The activities will be organized into five core exhibit areas: New Way Tunnel, Think Tank, Inventor's Garage, Chemistry Kitchen, and Tech World and will reinforce educational reform activities in math, science, problem- solving, team cooperation, and decision making. In addition to the large number of interactives, there is a substantial technology/telecommunications component known as the Tech Forum. This will serve at the home site for the Kentucky TeleLinking Network (KTLN). The educational objectives of the exhibit were developed under the guidance of prominent formal educators in the state and they address both the education reform goals of the state and national science and math standards. The exhibit has also been developed with direct participation of a number of private sector partners. It is an impressive community effort. The exhibit is scheduled to open in March, 1997.
DATE: -
TEAM MEMBERS: Theresa Mattei Gail Becker Amy Lowen
resource project Media and Technology
In every drop of water, down at the scale of atoms and molecules, there is a world that can fascinate anyone - ranging from a non-verbal young science student to an ardent science-phobe. The objective of Learning Science Through Guided Discovery: Liquid Water & Molecular Networks is to use advanced technology to provide a window into this submicroscopic world, and thereby allow students to discover by themselves a new world. We are developing a coordinated two-fold approach in which a cycle of hands-on activities, games, and experimentation is followed by a cycle of computer simulations employing the full power of computer animation to "ZOOM" into the depths of his or her newly- discovered world, an interactive experience surpassing that of an OMNIMAX theater. Pairing laboratory experiments with corresponding simulations challenges students to understand multiple representations of concepts. Answers to student questions, resolution of student misconceptions, and eventual personalized student discoveries are all guided by a clear set of "cues" which we build into the computer display. Moreover, the ability to visualize "real-time" dynamic motions allows for student-controlled animated graphic simulations on the molecular scale and interactive guided lessons superior to those afforded by even the most artful of existing texts. While our general approach could be applied to a variety of topics, we have chosen to focus first on water; later we will test the generality of the approach by exploring macromolecules such as proteins and DNA. The simulation sofware we have been developing embodies a simple molecular interaction model but requires leading edge computing in order to (1) apply the model to large enough systems to yield simple and realistic behavior, and (2) animate the result in real time with advanced graphics. Our ultimate goal in this project is not only to help students learn science, but also to help them learn to think like research scientists. By looking at scientific knowledge as a set of useful models - models that are essentially temporary and will inevitably lead to better ones - they can see that science is not a set of facts, but a method for discovering patterns and predictability in an otherwise disordered and unpredictable world. Through mastery of the simulation software, students will gain the self-confidence to embark on their own missions of discovery.
DATE: -
TEAM MEMBERS: H. Eugene Stanley