Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian Zahra Hazari Philip Sadler Gerhard Sonnert
resource research Public Programs
This paper contributes a theoretical framework informed by historical, philosophical and ethnographic studies of science practice to argue that data should be considered to be actively produced, rather than passively collected. We further argue that traditional school science laboratory investigations misconstrue the nature of data and overly constrain student agency in their production. We use our “Data Production” framework to analyze activity of and interviews with high school students who created data using sensors and software in a ninth-grade integrated science class. To understand the
DATE:
TEAM MEMBERS: Lisa Hardy Colin Dixon Sherry Hsi
resource project Media and Technology
The Environmental Scientist-in-Residence Program will leverage NOAA s scientific assets and personnel by combining them with the creativity and educational knowledge of the pioneer hands-on science center. To do this, the program will embed NOAA scientists in a public education laboratory at the Exploratorium. Working closely with youth Explainers, exhibit developers, and Web and interactive media producers at the Exploratorium, NOAA scientists will share instruments, data, and their professional expertise with a variety of public audiences inside the museum and on the Web. At the same time the scientists will gain valuable skills in informal science communication and education. Through cutting-edge iPad displays, screen-based visualizations, data-enriched maps and sensor displays, and innovative interactions with visitors on the museum floor, this learning laboratory will enable NOAA scientists and Exploratorium staff to investigate new hands-on techniques for engaging the public in NOAA s environmental research and monitoring efforts.
DATE: -
TEAM MEMBERS: Mary Miller
resource project Public Programs
The Colleges of Science & Engineering and Graduate Education, and the Metro Academies College Success Program (Metro) at San Francisco State University in partnership with San Francisco Unified School District and the San Francisco Chamber of Commerce develop an integrated approach for computing education that overcomes obstacles hampering broader participation in the U.S. science, technology, engineering and mathematics (STEM) workforce. The partnership fosters a more diverse and computing-proficient STEM workforce by establishing an inclusive education approach in computer science (CS), information technology, and computer engineering that keeps students at all levels engaged and successful in computing and graduates them STEM career-ready.

Utilizing the collective impact framework maximizes the efficacy of existing regional organizations to broaden participation of groups under-educated in computing. The collective impact model establishes a rich context for organizational engagement in inclusive teaching and learning of CS. The combination of the collective impact model of social agency and direct engagements with communities yields unique insights into the views and experiences of the target population of students and serves as a platform for national scalable networks.
DATE: -
TEAM MEMBERS: Keith Bowman Ilmi Yoon Larry Horvath Eric Hsu James Ryan
resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource research Public Programs
Summer science programs held in university research facilities provide ideal opportunities for pre-college students to master new skills and renew, refresh, and enrich their interest in science. These types of programs have a positive impact on a student's understanding of the nature of science and scientific inquiry and can open a youngster's eyes to the many possible career opportunities in science. This paper describes a study of high school students enrolled in the Summer Science Academy program at the University of Rochester that investigates the program's impact on students' knowledge of
DATE:
TEAM MEMBERS: Kerry Knox Jan Moynihan Dina Markowitz
resource project Public Programs
Arizona State University (ASU) in collaboration with Arizona Science Center, Boeing, Intel, Microchip, Motorola, Salt River Project, AZ Foundation for Resource Education, AZ Game & Fish Department, US Partnership for the Decade of Education for Sustainable Development, Mesa Public Schools, and Boys & Girls Clubs of the East Valley, offer a three-year extracurricular project resulting in IT/STEM-related learning outcomes for 96 participants in grades 7, 8, and 9. The project targets and engages female and minority youth traditionally under-represented in IT/STEM fields in multi-year out-of-school technological design and problem solving experiences. These include summer internships/externships and university research in the science center and industrial settings where participants develop socially responsible solutions for challenging real world problems. The program includes cognitive apprenticeships with diverse mentors, opportunities to practice workplace skills such as leadership, teamwork, time management, creativity and reporting, and use of technological tools to gather and analyze complex data sets. Participants simulate desert tortoise behaviors, research and develop designs to mitigate the urban heat island, build small-scale renewable energy resources, design autonomous rovers capable of navigating Mars-like terrain, and develop a model habitat for humans to live on Mars. Together with their families participants gain first-hand knowledge of IT/STEM career and educational pathways. In addition to youth outcomes, the adults associated with this project are better prepared to positively influence IT/STEM learning experiences for under-represented youth. The evaluation measures participant content knowledge, attitudes and interest in IT/STEM subjects, workplace skills and intentions to pursue IT/STEM educational and career pathways to understand participant reactions, learning, transfer and results. Informal curricula developed through this project, field-tested with youth at Boys & Girls Clubs and youth at Arizona Science Center will be available on the project website.
DATE: -
TEAM MEMBERS: Tirupalavanam Ganesh Monica Elser Stephen Krause Dale Baker Sharon Robinson-Kurplus
resource project Informal/Formal Connections
The "Salmon Research Team: A Native American Technology, Research and Science Career Exposure Program" is a three-year, youth-based ITEST project submitted by the Oregon Museum of Science and Industry. The project seeks to provide advanced information technology and natural science career exposure and training to 180 middle level and high school students. Mostly first-generation college-bound students, the target audience represents the Native American community and those with Native American affiliations in reservation, rural and urban areas. Students will investigate computer modeling of complex ecological, hydrological and geological problems associated with salmon recovery efforts. Field experiences will be provided in three states: Oregon, Washington and northern California. The participation of elders and tribal researchers will serve as a bridge between advanced scientific technology and traditional ecological knowledge to explore sustainable land management strategies. Students will work closely with Native American and other scientists and resource managers throughout the Northwest who use advanced technologies in salmon recovery efforts. Student participation in IT-dependent science enrichment and research activities involving natural science fields of investigation will occur year round. Middle school students are expected to receive at least 330 contact hours including a one-week summer research experience, a one-week spring break program, and seven weekends of residential programs during the school year. The high school component consists of 460 contact hours reflecting one additional week for the summer research experience. In addition to watershed and salmon recovery related research, students will be involved in other ancillary research projects. A vast array of partners are positioned to support the field research experience including, for example, the U.S. Department of the Interior, Redwood National State Park, College of Natural Resources and Sciences at Humboldt State University, Confederated Tribes of the Warm Springs, University of Oregon Institute of Marine Biology, University of Washington Columbia Basin Research project, the Northwest Center for Sustainable Resources at Chemeketa Community College and the Integrated Natural Resource Technology program at Mt. Hood Community College. The project is intended to serve as a model for IT-based youth science programs that address national and state education standards and are relevant to the cultural experience of Native American students. Two mentors will provide continued support to students: an academic mentor at the student's schools and a professional mentor from a local university or natural resource agency. Incentives will be provided for student participation including stipends and internships. Career exposure and work-related skills are integrated throughout the project activities and every program component. Creative strategies are used to encourage family involvement including, for example, salmon bakes and museum discounts.
DATE: -
TEAM MEMBERS: Travis Southworth-Neumeyer Daniel Calvert
resource project Public Programs
The cybersecurity workforce is one of the most critical employment sectors in the country. The Cybersecurity for Science Information (CSI): Developing Workforce Proficiency project brings together the University of Tennessee (UT) and Oak Ridge National Laboratory (ORNL) to develop plans for curriculum and research opportunities that will provide students with knowledge and hands-on experiences to confront today's ever-changing cybersecurity challenges. For this planning grant, UT and ORNL will collaborate with the University of New Mexico Library and the Los Alamos National Laboratory to develop a detailed recruitment strategy; blueprints of cybersecurity educational modules; a platform for sustainable curriculum design; and a strategy for ongoing assessment The project will also identify additional stakeholder groups.
DATE: -
TEAM MEMBERS: Suzanne Allard