Skip to main content

Community Repository Search Results

resource project Public Programs
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE: -
TEAM MEMBERS: Kurt Thoroughman Gregory DeAngelis Randy Buckner Steven Petersen Dora Angelaki
resource project Professional Development, Conferences, and Networks
AccessComputing is a NSF-funded Broadening Participation in Computing alliance with the goal of increasing the participation and success of people with disabilities in computing fields. AccessComputing is in its 10th year of funding. It supports students with disabilities from across the country in reaching critical junctures toward college and careers by providing advice, resources, mentoring opportunities, professional contacts, and funding for tutoring, internships, and computing conferences. For educators and employers, it offers institutes and workshops to build awareness of universal design and accommodation strategies, and to aid in recruiting and supporting students with disabilities through the development of inclusive programs and education on promising practices.
DATE: -
TEAM MEMBERS: Richard Ladner Sheryl Burgstahler
resource project Media and Technology
The PhET Interactive Simulations group at the University of Colorado is expanding their expertise of physics simulations to the development of eight-to-ten simulations designed to enhance students' content learning in general chemistry courses. The simulations are being created to provide highly engaging learning environments which connect real life phenomena to the underlying science, provide dynamic interactivity and feedback, and scaffold inquiry by what is displayed and controlled. In a second strand of the project, a group of experienced faculty participants are developing and testing lecture materials, classroom activities, and homework, all coordinated with well-established, research-based teaching methods like clicker questions, peer instruction, and/or tutorial-style activities, to leverage learning gains in conjunction with the simulations. The third strand of the project focuses on research on classroom implementation, including measures of student learning and engagement, and research on simulation design. This strand is establishing how specific characteristics of chemistry sim design influence engagement and learning, how various models of instructional integration of the sims affect classroom environments as well as learning and engagement, and how sim design and classroom context factors impact faculty use of sims. To ensure success the project is basing sim design on educational research, utilizing high-level software professionals (to ensure technically sophisticated software, graphics, and interfaces) working hand-in-hand with chemistry education researchers, and is using the established PhET team to cycle through coding, testing, and refinement towards a goal of an effective and user friendly sim. The collection of simulations, classroom materials, and faculty support resources form a suite of free, web-based resources that anyone can use to improve teaching and learning in chemistry. The simulations are promoting deep conceptual understanding and increasing positive attitudes about science and technology which in turn is leading to improved education for students in introductory chemistry courses both in the United States and around the world.
DATE: -
TEAM MEMBERS: Katherine Perkins Robert Parson
resource project Media and Technology
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE: -
TEAM MEMBERS: Katherine Perkins Michael Dubson Noah Finkelstein Robert Parson Carl Weiman