Skip to main content

Community Repository Search Results

resource project Media and Technology
The Westchester Children’s Museum will develop Full STEAM (Science, Technology, Engineering, Art, and Math) Ahead, an integrated, module-based sequence of hands-on STEAM workshops adaptable for both in-person and virtual teaching for high-need 2nd to 6th grade students at Thomas Cornell Academy in Yonkers, NY and Waterside School in Stamford, CT. Project activities include program development, preparation, delivery, and evaluation to create programs that are replicable and sustainable while leveraging the museum’s resources to demonstrate how it can support their communities in need during unprecedented times. Full STEAM Ahead anticipates reaching 300 students from low-income and economically disadvantaged families.
DATE: -
TEAM MEMBERS: Margie Wolf
resource project Media and Technology
The Carnegie Science Center will contribute to the reinvigoration of planetarium programming nationwide by creating and sharing three multifaceted productions combining live theatre and science education. The "Cosmic Cookbook" will be a free online digital toolkit for planetarium educators designed to delight audiences, inspire the next generation of scientists, and promote a scientifically literate community. Targeting elementary school students, each show will include theatric, character-driven scripts for presenters; digital media assets for planetarium producers, including original full-dome content; and how-to guides for live demonstrations and storytelling. The museum will pilot and evaluate each show with students from local underserved schools and incorporate feedback before distribution for other planetariums across the country. The museum will release video tutorials on teaching science and theatric presentation, webinars, and script updates throughout the lifespan of the project to foster sustained replication of the programs.
DATE: -
TEAM MEMBERS: Amanda Iwaniec
resource research Media and Technology
Nothing generates excitement like sound! From the iconic guitar riffs in Led Zeppelin’s famous song “Stairway to Heaven” to birds energetically singing (way too early in the morning) outside my bedroom window, nonscientists can relate to acoustics. Many of us entered the field because we love music, a passion evident at the jam sessions that accompany many meetings of the Acoustical Society of America (ASA). Science communication enables us to share that enthusiasm with nontechnical audiences. The goal of this article is to introduce fundamental ideas in science communication and resources
DATE:
TEAM MEMBERS: Allison Coffin
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. Youth Radio (YR) Media is a national network of journalists, designers, developers and artists ages 14-24 who create media and technology that address key social issues — including, since 2019, A.I. through an ethics and equity lens. Participants are primarily youth of color and those contending with economic and other barriers to full participation in STEM.
DATE:
TEAM MEMBERS: Lissa Soep
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson