Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The Buffalo Society of Natural Sciences plans to conduct a 5 year project to train 150 mentor teachers (30 teachers/year) and their principals, who will then train the remaining 1100 elementary teachers in the Buffalo Public School System. The training would include two 5-week summer sessions (in a Magnet school that is physically incorporated into the Buffalo Museum of Science) and 4 in-service workshops during the academic years following each of the summer workshops. This innovative leadership project is a collaborative effort between the Buffalo Society of Natural Sciences (including both education and curatorial/science staff persons) the Buffalo Public Schools, and individuals from local colleges and universities. The setting of the project is enhanced by a Science and Math Magnet School which is housed within the museum, and by the school/museum's location in a largely inner city environment with easy accessibility to minority persons. The project is designed to provide mentor teachers with a strong science background in pedagogy and content over a two-year period of summer and academic-year workshops, and to prepare and support these mentors as they inservice their colleagues. Project staff from the museum, public schools, and the academic community will provide strong support through academic-year workshops, site visits and telecommunications networking. Principals will be appropriately involved, and will work with mentors to develop a science inservice program tailored to meet the needs of their individual schools; as a consequence, virtually all of the 1100 K-6 classroom teachers of science in the Buffalo Public Schools will have been prepared to teach investigative, hands-on science to their students. Non-NSF cost sharing is approximately 27.9% of the amount requested from NSF.
DATE: -
TEAM MEMBERS: Peter Dow
resource project Media and Technology
Digital image processing offers several possible new approaches to the teaching of a variety of mathematical concepts at the middle-school and high-school levels. There is reason to believe that this approach will be successful in reaching some "at-risk" students that other approaches miss. Since digital images can be made to reflect almost any aspect of the real world, some students may have an easier time taking an interest in them than they might with artificial figures or images resulting from other graphics- oriented approaches. Using computer-based tools such as image processing operators, curve-fitting operators, shape analysis operators, and graphical synthesis, students may explore a world of mathematical concepts starting from the psychologically "safe" territory of their own physical and cultural environments. There is reason to hope that this approach will be particularly successful with students from diverse backgrounds, girls and members of minority groups, because the imagery used in experiments can easily be tailored to individual tastes. The work of the project consists of creating detailed designs of the learning modules, implementing them on microcomputers, and evaluating their effectiveness in a variety of ways, using trials with students at Rainier Beach High School, which is an urban public high school having an ethnically diverse student body and a Macintosh computer laboratory.
DATE: -
TEAM MEMBERS: Steven Tanimoto Michele LeBrasseur James King