Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.

The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.

This award is being co-funded with the Office International and Integrative Activities.
DATE: -
TEAM MEMBERS: Bruce MacFadden
resource research Summer and Extended Camps
The historical under-representation of diverse youth in environmental science education is inextricably connected to access and identity-related issues. Many diverse youth with limited previous experience to the outdoors as a source for learning and/or leisure may consider environmental science as ‘unthinkable’. This is an ethnographic study of 16 diverse high school youths’ participation, none of who initially fashioned themselves as ‘outdoorsy’ or ‘animal people’, in a four-week summer enrichment program focused on herpetology (study of reptiles and amphibians). To function as ‘good’
DATE:
TEAM MEMBERS: Heidi Carlone Lacey Huffling Terry Tomesek Tess A. Hegedus Catherine Matthews Melony H. Allen Mary C Ash
resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource project Media and Technology
Education stakeholders from advocates to developers are increasingly recognizing the potential of science games in advancing student academic motivation for and interest in science and science careers. To maximize this potential, the project will use science games (e.g. Land Science, River City, and EcoMUVE), shown to be enjoyable to students and proven to promote student learning in science at the middle school level. Through a two-phase process, games will be used as vehicles for learning about ways to change how students think about science and potentially STEM careers. The goal of the intervention is to explore which processes and design features of science games will actually help students move beyond a temporary identity of being a scientist or engineer (as portrayed while playing the game) to one where students began to see themselves in real STEM careers. Students' participation will be guided by teams of teachers, faculty members, and graduate students from Drexel University and a local school. All science students attending the local inner city middle school in Philadelphia, PA, will participate in the intervention.

Using an exploratory mixed-method design, the first two years of the project will focus on exploring, characterizing, coding, and analyzing data sets from three large games designed to help students think about possible careers in science. During year 3, the project will integrate lessons learned from the first two years into the existing middle school science curriculum to engage students in a one-year intervention using PCaRD (Play Curricular activity Reflection Discussion). During the intervention, the PI will work with experts from Drexel University and a local school to collect data on the design features of Land Science to capture identity change in the science identity of the participating students. Throughout the course of year 3, the PI will observe, video, interview, survey, and use written tasks to uncover if the Land Science game is influencing students' identity in any way (from a temporary to a long-term perspective about being a scientist or engineer). Data collected during three specified waves during the intervention will be compared to analyses of existing logged data through collaborations with researchers at Harvard University and the University of Wisconsin-Madison. These comparisons will focus on similar middle-aged science students who used the same gaming environments as the students involved in this study. However, the researcher will intentionally look for characteristics related to motivation, science knowledge, and science identity change.

This project will integrate research and education to investigate learning as a process of change in student science identity within situated environmental contexts of digital science gameplay around curricular and learning activities. This integrated approach will allow the researcher to explore how gaming is inextricably linked to the student as an individual while involved in the learning of domain specific content in science. The collaboration among major university and school partners; the expertise of the researcher in educational psychology, educational technology, and science games; and the project's advisory board makes this a real-life opportunity for the researcher to use information that naturally exists in games to advance knowledge in the field about the value of gaming to changing students' science identities. It also responds to reports by the National Research Council committee on science learning and computer games, which identifies games as having the potential to catalyze new approaches to science learning.
DATE: -
TEAM MEMBERS: Aroutis Foster
resource project Public Programs
This project, “Global, Local, Coastal”, will be led by Groundwork Hudson Valley and Sarah Lawrence College, to integrate and expand the work of three award-winning environmental education centers in Yonkers, NY – The Science Barge, Ecohouse and the Center for the Urban River (CURB). Its primary objective is to prepare low-income students for the impact of a changing climate so that they can participate both personally and professionally in a world in which these issues are increasingly prevalent. It reaches an audience that is not well served by traditional programs and is most vulnerable to the consequences of climate change. Over the course of two years, the project will serve 600-700 middle and high school youth, primarily from the Yonkers public school system, through a new, integrated curriculum that teaches about these issues from multiple perspectives. Beyond its impact on students, the project will have a broader impact on people in our region. Together, the Barge, Ecohouse and CURB are visited by close to 10,000 people each year and new exhibits will reinforce key themes related to resiliency and adaptation. Other partners include NOAA’s Hudson River National Estuarine Research Reserve, Lamont Doherty, and the Center for Climate Change in the Urban Northeast. The state’s NY Rising Program and Yonkers Public Schools are key partners too. The project will be carried out in a community that has been severely affected by extreme weather in the last decade, including three hurricanes. Outcomes will help create “an informed society to anticipate and respond to climate and its impacts.” It also addresses NOAA’s goal of a “Weather-Ready Nation,” and “Resilient Coastal Communities and Economies.
DATE: -
TEAM MEMBERS: Ellen Theg
resource project Media and Technology
Purpose: This project will develop and test Eco, an online multiplayer virtual environment and game designed to enhance middle school students' knowledge of ecology and environmental literacy. This is important because according to the 2011 National Assessment of Educational Progress, students in the United States ranked 17th in science among the world's most developed countries, and over a third of eighth-graders scored below basic level, the lowest performance level. The Framework for 21st Century Skills presents the need for education materials that engage students and use technology effectively, meet rigorous content and skill standards, foster interdisciplinary work, and promote collaborative problem solving.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of Eco consisting of a system architecture that enabled user-controlled avatars to complete basic tasks. At the end of Phase I, a pilot study with 60 students from five classrooms demonstrated that the prototype functioned as intended, that students found the game to be engaging, and that students were able to collaborate with classmates during gameplay. In Phase II the developers will strengthen functionality, add content, and build a teacher dashboard to track student data and house implementation resources. After development is complete, the team will conduct a pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the game for promoting students' ecosystem learning and environmental literacy. The researchers will collect data from 150 students in 10 classrooms. Half of the classrooms will be randomly assigned to use Eco to supplement standard classroom instruction while the other half will continue with normal practice. Analyses will compare pre-and-post scores of student's ecology knowledge and environmental literacy.

Product: Eco will be a multi-player game to teach standards in ecology and prepare middle schools students to be environmentally literate citizens. To play the game, students will enter a shared online world featuring a simulated ecosystem of plants and animals. Students will co-create a civilization by measuring, modeling, and analyzing the underlying ecosystem. Students will advocate for proposed plans to classmates and make decisions as a group. Cooperation and science-based decision making activities will occur, in order to prevent the destruction of the environment. The game will include teacher resources to support the alignment of game play to learning goals, and implementation.
DATE: -
TEAM MEMBERS: John Krajewski
resource project Public Programs
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.

*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE: -
TEAM MEMBERS: Kristin Ruppel Clifford Montagne Lisa Lone Fight
resource evaluation Public Programs
With support from the Institute of Museum and Library Services, The Wild Center (TWC) engaged Insight Evaluation Services (IES) to assess the impact of specific outreach activities of the Northern New York Maple Project between September 2013 and September 2015. Data for this two-year evaluation study were collected via in-depth telephone interviews conducted with a total of 25 participants, including 16 Tupper Tappers (Tupper Lake area residents who engaged in backyard tapping to provide sap for syrup production at the museum through the Community Maple Project), four local school teachers
DATE:
TEAM MEMBERS: Kirsten Buchner
resource evaluation Public Programs
The primary goal of Project TRUE is to increase the interest of high school students in pursuing science, technology, engineering, and mathematics (STEM) majors, by increasing their exposure to urban ecology research conducted with college mentors. Project TRUE also establishes a research and education partnership between the Wildlife Conservation Society (WCS) and Fordham University, to implement and evaluate the effectiveness of a tiered mentorship educational model. The model leverages both formal (Fordham) and informal (WCS) educational practices and expertise. This evaluation report from
DATE:
TEAM MEMBERS: Rachel Becker-Klein Theresa Fox
resource project Public Programs
Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.
DATE: -
TEAM MEMBERS: Karen Oberhauser Michele Koomen Gillian Roehrig Robert Blair Andrea Lorek Strauss
resource evaluation Media and Technology
WCS launched its electronic field trip program, Distance Learning Expeditions, in 2001 when there was tremendous interest in the educational community in the potential of videoconferencing technology for program delivery, as well as money available for the purchase of related broadcast equipment. The program grew rapidly and was successful through 2009 -- serving 9,600 students in 2006-07, its largest year. From 2010 to 2014, with school budget cuts, high equipment maintenance costs, and shifts in staffing, participation in the program declined. In 2010, WCS secured a grant from IMLS for
DATE:
TEAM MEMBERS: Chris Hardee Michael Duffin
resource project Public Programs
Sam Noble Oklahoma Museum of Natural History will develop traveling natural history science curricula kits for K-12 students. This project will expand the museum's outreach program, featuring STEM (Science, Technology, Engineering, and Mathematics) content with a focus on Oklahoma geology, life, and cultural science. The museum will share the educational kits, featuring materials aligning with state educational standards, with teachers across Oklahoma. The museum's digitization of the kits will increase the capacity and number of teachers who have access to the material and enable students to experience high-quality STEM educational opportunities offsite and online.
DATE: -
TEAM MEMBERS: Jessica Cole