Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE: -
TEAM MEMBERS: Robert Westervelt Carol Lynn Alpert Ray Ashoori Tina Brower-Thomas
resource project Media and Technology
This INSPIRE award is partially funded by the Cyber-Human Systems Program in the Division of Information and Intelligent Systems in the Directorate for Computer Science and Engineering, the Gravitational Physics Program in the Division of Physics in the Directorate for Mathematical and Physical Sciences, and the Office of Integrative Activities.

This innovative project will develop a citizen science system to support the Advanced Laser Interferometer Gravitational wave Observatory (aLIGO), the most complicated experiment ever undertaken in gravitational physics. Before the end of this decade it will open up the window of gravitational wave observations on the Universe. However, the high detector sensitivity needed for astrophysical discoveries makes aLIGO very susceptible to noncosmic artifacts and noise that must be identified and separated from cosmic signals. Teaching computers to identify and morphologically classify these artifacts in detector data is exceedingly difficult. Human eyesight is a proven tool for classification, but the aLIGO data streams from approximately 30,000 sensors and monitors easily overwhelm a single human. This research will address these problems by coupling human classification with a machine learning model that learns from the citizen scientists and also guides how information is provided to participants. A novel feature of this system will be its reliance on volunteers to discover new glitch classes, not just use existing ones. The project includes research on the human-centered computing aspects of this sociocomputational system, and thus can inspire future citizen science projects that do not merely exploit the labor of volunteers but engage them as partners in scientific discovery. Therefore, the project will have substantial educational benefits for the volunteers, who will gain a good understanding on how science works, and will be a part of the excitement of opening up a new window on the universe.

This is an innovative, interdisciplinary collaboration between the existing LIGO, at the time it is being technically enhanced, and Zooniverse, which has fielded a workable crowdsourcing model, currently involving over a million people on 30 projects. The work will help aLIGO to quickly identify noise and artifacts in the science data stream, separating out legitimate astrophysical events, and allowing those events to be distributed to other observatories for more detailed source identification and study. This project will also build and evaluate an interface between machine learning and human learning that will itself be an advance on current methods. It can be depicted as a loop: (1) By sifting through enormous amounts of aLIGO data, the citizen scientists will produce a robust "gold standard" glitch dataset that can be used to seed and train machine learning algorithms that will aid in the identification task. (2) The machine learning protocols that select and classify glitch events will be developed to maximize the potential of the citizen scientists by organizing and passing the data to them in more effective ways. The project will experiment with the task design and workflow organization (leveraging previous Zooniverse experience) to build a system that takes advantage of the distinctive strengths of the machines (ability to process large amounts of data systematically) and the humans (ability to identify patterns and spot discrepancies), and then using the model to enable high quality aLIGO detector characterization and gravitational wave searches
DATE: -
TEAM MEMBERS: Vassiliki Kalogera Aggelos Katsaggelos Kevin Crowston Laura Trouille Joshua Smith Shane Larson Laura Whyte
resource research Afterschool Programs
This paper examines STEM-based informal learning environments for underrepresented students and reports on the aspects of these programs that are beneficial to students. This qualitative study provides a nuanced look into informal learning environments and determines what is unique about these experiences and makes them beneficial for students. We provide results of a qualitative research study conducted with the Mathematics, Engineering, Science Achievement (MESA) program, an informal learning environment that has proven to be effective in recruiting, retaining and encouraging
DATE:
TEAM MEMBERS: Cameron Denson Chandra Austin Stallworth Christine Hailey Daniel Householder
resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource project Professional Development, Conferences, and Networks
QuarkNet is a national program that partners high school science teachers and students with particle physicists working in experiments at the scientific frontier. These experiments are searching for answers to fundamental questions about the origin of mass, the dimensionality of spacetime and the nature of symmetries that govern physical processes. Among the experimental projects at the energy frontier with which QuarkNet is affiliated is the Large Hadron Collider, which is poised at the horizon of discovery. The LHC will come on line during the 5-years of this program. QuarkNet is led by a group of teachers, educators and physicists with many years of experience in professional development workshops and institutes, materials development and teacher research programs. The project consists of 52 centers at universities and research labs in 25 states and Puerto Rico. It is proposed that Quarknet be funded as a partnership among the ESIE program of EHR; the Office of Multidisciplinary Activities and the Elementary Particle Physics Program (Division of Physics), both within MPS; as well as the Division of High Energy Physics at DOE.
DATE: -
TEAM MEMBERS: Mitchell Wayne Randal Ruchti Daniel Karmgard
resource evaluation Public Programs
In the Communities of Learning for Urban Environments and Science (CLUES) project, the four museums of the Philadelphia-Camden Informal Science Education Collaborative worked to build informal science education (ISE) capacity in historically underserved communities. The program offered comprehensive professional development (PD) to Apprentices from 8-10 community-based organizations (CBO), enabling them to develop and deliver hands-on family science workshops. Apprentices, in turn, trained Presenters from the CBOs to assist in delivering the workshops. Families attended CLUES events both at
DATE:
resource evaluation Media and Technology
This report describes an evaluation of two educational programs that Iridescent offered with a grant from the National Science Foundation. These two programs were developed for youth and their families and were organized around open-ended Engineering Design Challenges. These are hands-on problem-solving activities supported by a web-based platform known as the Curiosity Machine. The Curiosity Machine and the Design Challenges were designed to work together to engage learners in fundamental physics and engineering concepts in fun and open-ended ways, while enhancing their curiosity, creativity
DATE:
TEAM MEMBERS: Tara Chklovski Daniel Hickey
resource evaluation Public Programs
Beginning in autumn 2011, Education Development Center’s Center for Children and Technology (EDC|CCT) worked closely with Iridescent to evaluate the impact of its Family Science after-school program on its participants and partners.1 Between September 2011 and April 2015, Iridescent held six series of five-week programs in New York and Los Angeles at nine different school and museum sites. The program activities centered on “design challenges” that introduced families to the engineering design process and supported the development of curiosity, creativity, and persistence. These five-week
DATE:
TEAM MEMBERS: Elizabeth Pierson Loulou Momoh Naomi Hupert
resource evaluation Public Programs
The Center for Children and Technology (CCT) at Education Development Center, Inc., an international nonprofit research and development organization (cct.edc.org), conducted the formative evaluation of the fourth year of the Be A Scientist! (BAS) project. This project, managed by Iridescent—a nonprofit afterschool science, technology, engineering, and mathematics (STEM) program (www.iridescentlearning.org), has the goal of providing high-quality afterschool science and engineering courses to underserved families in New York City and Los Angeles. The project aims to enable participants to
DATE:
TEAM MEMBERS: Maggie Jaris Naomi Hupert
resource project Public Programs
A partnership between Carthage College and the Appalachian Mountain Club has delivered a successful public education and outreach program that merges natural environment topics and astronomy. Over the four years of activity, over 25,000 people have received programming. The effort has trained nature educators, permanent and seasonal AMC staff, and undergraduate physics and astronomy students to integrate diverse topical material and deliver high quality programming to the lay public. Unique to the program is the holistic nature of the material delivered - an 'atypical' astronomy program. Linking observable characteristics of the natural world with astronomical history and phenomena, and emphasizing the unique sequence of events that have led to human life on Earth, the program has changed attitudes and behaviors among the public participants. Successful interventions have included hands-on observing programs (day and night) that link nature content to the observed objects; table-talk presentations on nature/astronomy topics; dark skies preservation workshops; and hands-on activities developed for younger audiences, including schools, camps, and family groups. An extensive evaluation and assessment effort managed by a leading sociologist has demonstrated the effectiveness of the approach, and contributed to continuous improvement in the program content and methods.
DATE: -
TEAM MEMBERS: Douglas Arion
resource evaluation Media and Technology
The Large Hadron Collider (LHC) is one of the world's largest experimental facilities, where thousands of scientists and engineers from over 100 countries collaborate to shed new light on the workings of our universe. As LHC research, such as the discovery of the Higgs boson, continues to hit the news in future years, it will be important for educators in informal science institutions to understand how to engage their visiting public's interests and curiosities and shape their understanding regarding this leading edge research. Funded by
DATE:
resource project Public Programs
Currently, many museums present histories of science and technology, but very few are integrating scientific activity--observation, measurement, experimentation-with the time- and place-specific narratives that characterize history-learning experiences. For the Prairie Science project, Conner Prairie is combining proven science center-style activities, developed by the Science Museum of Minnesota, with family-engagement strategies developed through extensive research and testing with audiences in historical settings. The goal of this integration is to create guest experiences that are rich in both STEM and historical content and encourage family learning. One key deliverable of this project is the Create.Connect gallery, which is currently installed at Conner Prairie. Create.Connect allows the project team to evaluate and research hands-on activities, facilitation strategies and historic settings to understand how these elements combine to encourage family conversations and learning around historical narratives and STEM content. For example, in one exhibit area families can experiment with creating their own efficient wind turbine designs while learning about the innovations of the Flint & Walling windmill manufacturing company from Indiana. The activity is facilitated by a historic interpreter portraying a windmill salesman from 1900. The interpreter not only guides the family though the process of scientific inquiry, but shares his historic perspective on wind power as well. Two other exhibit areas invite hands-on exploration of electrical circuits and forces in motion as they connect to stories from Indiana history. Evaluation and research findings from the Create.Connect exhibit will be used to develop a model that can guide other history institutions that want to incorporate STEM content and thinking into their exhibits and interpretation. By partnering with the Science Museum of Minnesota, we will combine the experience of science center professionals and history museum professionals to find the best practices for incorporating science activities into historic settings. To ensure that this dissemination model is informed from many perspectives, Conner Prairie has invited the participation of four history museums: The Museum of America and the Sea, Mystic, Connecticut; the California State Railroad Museum, Sacramento, California; the Wabash County Historical Society, Wabash, Indiana; and the Oliver H. Kelley Farm, Elk River, Minnesota. Each of the four participants will install history-STEM exhibit components which will be connected to location-specific historic narratives. Drawing on the staff experience and talents of participant museums, this project will develop realistic solutions to an array of anticipated barriers. These issues and the resulting approaches will become part of a stronger, more adaptable dissemination model that will support history museums in creating STEM-based guest experiences.
DATE: -
TEAM MEMBERS: Cathy Ferree