Skip to main content

Community Repository Search Results

resource research Media and Technology
How can creators of STEM learning media reach underserved parents and children, and support the kinds of playful STEM interactions that are foundational for future STEM learning? This research report summarizes findings from a pilot study of Cyberchase: Mobile Adventures in STEM, a program that uses mobile text messaging and short videos to encourage hands-on family learning among low-income Latino families. In the study, 95 mostly Latino families received weekly text messages with video clips from the popular children's series Cyberchase, and fun activities to do with their
DATE:
TEAM MEMBERS: Bill Tally Noah Goodman Jamie Kynn
resource research Media and Technology
Information visualization could be used to leverage the credibility of displayed scientific data. However, little was known about how display characteristics interact with individuals' predispositions to affect perception of data credibility. Using an experiment with 517 participants, we tested perceptions of data credibility by manipulating data visualizations related to the issue of nuclear fuel cycle based on three characteristics: graph format, graph interactivity, and source attribution. Results showed that viewers tend to rely on preexisting levels of trust and peripheral cues, such as
DATE:
TEAM MEMBERS: Nan Li Dominique Brossard Dietram Scheufele Paul Wilson Kathleen Rose
resource research Media and Technology
Science permeates nearly every facet of human life and civilization. However, in an age of media oversaturation, it has been increasingly easier for pseudoscientific information to be disseminated among the masses, especially by those with a political agenda. In his book, ‘Not a Scientist: How Politicians Mistake, Misrepresent, and Utterly Mangle Science’, author Dave Levitan creates a guidebook for spotting and debunking unscientific ideas in the political sphere, a vital tool in the Information Age.
DATE:
TEAM MEMBERS: Zachary Kizer
resource research Media and Technology
This book is a beginners' guide to science journalism, explaining the 21st century journalistic process, from generating story ideas to creating multimedia content when the story's written, taking in research and writing structures along the way. While many of the chapters are introductory, the book also covers topics also likely to be of interest to more experienced writers, such as storytelling techniques and investigative journalism. Readers are introduced to important debates in the field, including the role that science journalism plays; whether it is a form of `infotainment', or whether
DATE:
TEAM MEMBERS: Andy Ridgway
resource research Media and Technology
This comment discusses feminization of science communication as a process that is related to the professionalization of the field, but also with the subordination of its practices to certain ideas of science that have described as androcentric. It argues that science communication can play an important role in questioning this subordination and contributing to democratizing science bringing gender diversity into it. For this, the comment presents the case of a Colombian transgender scientist whose public presence in media has being important to destabilize scientific subjectivities in the
DATE:
TEAM MEMBERS: Tania Perez-Bustos
resource project Media and Technology
This conference grant will support professional development at Jackson WILD. Jackson WILD (formerly the Jackson Hole Wildlife Film Festival) is the premier industry conference for science and natural history documentary filmmakers and distributors, bringing the world's top factual storytellers together with inspiring STEM (Science, Technology, Engineering, Mathematics) professionals at a biennial industry conference and juried film festival. This project supports a robust thematic strand of professional development within the conference focused on strategies for making the science of science communication more accessible to an industry that has significant influence over the accuracy, quality and quantity of STEM stories reaching mainstream audiences through popular media.

The conference grant strategies are scaffolded upon the results of Jackson WILD's previous two conference awards which have employed multiple interventions aimed at 1) understanding how science communication expertise is perceived and gained by media content creators, 2) identifying the demographics and professional development needs of both emerging and seasoned STEM storytellers, and 3) finding pathways to enhance science communication expertise for STEM professionals seeing to increase their reach to public audiences. The current conference grant will build upon lessons learned and offer thematic professional development programming advancing science communication literacy and best practices among media professionals and STEM communicators. The 2019 Jackson WILD industry conference will also further expand the cross-industry STEM media fellows program, which offers professional development and cohort-building opportunities to emerging professionals in both STEM and media fields. The driving theory of change is that access to research-informed professional development and increased science communication fluency among content creators and STEM communicators results in products (i.e. documentary programs, podcasts, social media content, etc.) that are in better alignment with evidence-based best practices for communicating STEM topics to lay audiences. Therefore, the resulting media products will be more effective in engaging and educating those audiences, resulting in increased STEM literacy and informal STEM learning. To extend the reach and impact of the conference, the program content will be available on line via streaming videos and podcasts on various channels. Investing in professional development for science media professionals will strength the ecosystem of quality STEM media and help support public engagement in STEM more broadly. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ru Mahoney Lisa Samford
resource project Media and Technology
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.

The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Amy Grack Nelson Molly Bloom
resource project Media and Technology
Science television shows are an important source of informal learning and enrichment for preschool-aged children. However, one limitation of television programming is that it is largely a one-way, non-interactive medium. Research suggests that children learn best through active engagement with content, and that parents can make TV watching more interactive by co-viewing and talking with their children. However, many parents and other adults may lack the time or experience and comfort with science language and content to provide critcial just-in-time support for their children. This study seeks to take advantage of recent advances in artificial intelligence that now allow children to enjoyably interact with automated conversational agents. The research team will explore whether such conversational agents, embedded as an on-screen character in a science video, can meaningfully interact with children about the science content of the show by simulating the benefits of co-viewing with an adult. If successful, the project could lay the foundation for a new genre of science shows, helping transform video watching into more interactive and engaging learning experiences. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project will develop interactive videos incorporating a conversational agent in three 11-minute episodes of a future children's animated television program. The videos will enable children to speak with the main character of the show as the character solves everyday science mysteries, thus priming children to engage in observation, prediction, pattern finding, and problem solving through scaffolded conversation. This study will be carried out in two iterative cycles with the goal of developing and testing the embedded conversational function for each episode. In each cycle, the project team, which includes experts in children's TV production, as well as educational and HCI researchers will develop the storyboard and conversation prompts and follow-ups, create animated videos based on the revised script, and create a mobile application of the interactive video integrated with the conversational agent. Field testing with 10 children will be conducted to iteratively improve the embedded conversational function. In the pilot testing stage, a controlled study will be conducted with 30 children in each group (N=120): 1) watching the episode with the embedded conversational function; 2) watching the episode with a human partner carrying out the dialogue in the script rather than the virtual character; 3) watching the episode with pseudo-interaction, in which the animated character asks questions but does not attempt to understand or personally respond to children's answers; and 4) watching the episode with no dialogue. Data collected from the experiments will be used to examine whether and in what ways use of a conversational agent affects children's engagement, attention, communication strategies, perceptions, and science learning, and whether these effects vary by children's age, gender, socioeconomic status, language background, and oral language proficiency in English. The project will provide a comprehensive evaluation of the feasibility and potential of incorporating conversational agents into screen media to foster young children's STEM learning and engagement.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mark Warschauer Daniel Whiteson Sara DeWitt Andres Bustamante Abby Jenkins
resource project Media and Technology
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences.

Twin Cities Public Television project on Gender Equitable Teaching Practices in Career and Technical Education Pathways for High School Girls is designed to help career and technical education educators and guidance counselors recruit and retain more high school girls from diverse backgrounds in science, technology, engineering and math (STEM) pathways, specifically in technology and engineering. The project's goals are: 1) To increase the number of high school girls, including ethnic minorities, recruited and retained in traditionally male -STEM pathways; 2) To enhance the teaching and coaching practices of Career and Technical Education educators, counselors and role models with gender equitable and culturally responsive strategies; 3) To research the impacts of strategies and role model experiences on girls' interest in STEM careers; 4) To evaluate the effectiveness of training in these strategies for educators, counselors and role models; and 5) To develop training that can easily be scaled up to reach a much larger audience. The research hypothesis is that girls will develop more positive STEM identities and interests when their educators employ research-based, gender-equitable and culturally responsive teaching practices enhanced with female STEM role models. Instructional modules and media-based online resources for Minnesota high school Career and Technical Education programs will be developed in the Twin Cities of Minneapolis and St. Paul and piloted in districts with strong community college and industry partnerships. Twin Cities Public Television will partner with STEM and gender equity researchers from St. Catherine University in St. Paul, the National Girls Collaborative, the University of Colorado-Boulder (CU-Boulder), the Minnesota Department of Education and the Minnesota State Colleges and Universities System.

The project will examine girls' personal experiences with equitable strategies embedded into classroom STEM content and complementary mentoring experiences, both live and video-based. It will explore how these experiences contribute to girls' STEM-related identity construction against gender-based stereotypes. It will also determine the extent girls' exposure to female STEM role models impact their Career and Technical Education studies and STEM career aspirations. The study will employ and examine short-form autobiographical videos created and shared by participating girls to gain insight into their STEM classroom and role model experiences. Empowering girls to respond to the ways their Career and Technical Education educators and guidance counselors guide them toward technology and engineering careers will provide a valuable perspective on educational practice and advance the STEM education field.
DATE: -
TEAM MEMBERS: Rita Karl Brenda Britsch Siri Anderson
resource research Media and Technology
These Latinas are innovators, problem-solvers and science superstars who celebrate their heritage and culture. They’re passionate about their work, hobbies, families and helping to make the world a better place. They share their strategies and pathways in jobs where Latinas are under-represented, and motivate girls to pursue all kinds of interests and career paths. Estas latinas solucionan problemas, son innovadoras y superestrellas de ciencia que celebran su patrimonio y cultura. Les apasiona su trabajo, familia, aficiones y ayudar a mejorar el mundo. Comparten sus estrategias y caminos en
DATE:
TEAM MEMBERS: Rita Karl
resource evaluation Media and Technology
Ruff Family Science is a project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. Building on the success of the PBS series FETCH! with Ruff Ruffman, the project leverages FETCH’s funny and charismatic animated host, along with its proven approach to teaching science, to inspire educationally disadvantaged families to explore science together. The project is utilizing a research and design process to create resources that meet the needs of families
DATE:
TEAM MEMBERS: Mary Haggerty Heather Lavigne Jessica Andrews
resource research Media and Technology
Latina SciGirls addresses specific barriers that prevent many young Latinas from participating fully in STEM, including: Lack of STEM identity (girls’ ability to envision themselves as STEM professionals) Limited exposure to STEM role models who look like them Lack of knowledge and/or misunderstanding of STEM fields
DATE:
TEAM MEMBERS: Rita Karl Alicia Santiago Brenda Britsch Brad McLain Valerie Knight-Williams