Skip to main content

Community Repository Search Results

resource project Media and Technology
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a mobile app to guide families through sequenced sets of videos and hands-on activities, building on the popular PBS KIDS series Work It Out Wombats!
DATE: -
TEAM MEMBERS: Marisa Wolsky Janna Kook Jessica Andrews
resource project Exhibitions
The Mississippi Children’s Museum will complete WonderBox, a 1,500 square foot-STEAM exhibit in the museum’s existing arts gallery. WonderBox will address a critical need in Mississippi for increased education in STEAM subjects during elementary grades—particularly for those individuals who are underserved and lack adequate access to resources. Through the proposed exhibit area and programming, children from all backgrounds will explore topics such as design, art, coding, robotics, engineering, and circuitry. It will encourage active exploration and inquiry-based learning while facilitating parent/caregiver interaction with hands-on activities and guided conversations that will inspire children to design, create, and invent. Additionally, the gallery will offer children opportunities to interact with concepts from industries that are vital to Mississippi’s economy in an environment that encourages innovation and creative problem solving.
DATE: -
TEAM MEMBERS: Susan Easom Garrard
resource project Public Programs
Youth generate data in the form of social media posts, and they are likely to understand that these data can be used by others for multiple purposes. However, they may be less likely to know that other personal data, such as records related to shopping patterns or medical visits, can also be tracked, analyzed, and used. Consequently, today's young people have a personal stake in their ability to understand and critically question multiple types of data practices. This project will advance knowledge regarding how informal educational organizations can empower young people in a data-centric world. In partnership with public libraries in New York City, Pratt Institute will develop a model for supporting critical data literacy in informal settings. Critical data literacy includes the ability to critique data practices throughout the data life cycle; to situate data within broader contexts such as cyberinfrastructures and societal trends; and to use data to answer questions and to achieve purposes that are personally meaningful and important. To develop a model of informal education that supports critical data literacy, the project team will co-design data literacy sessions with teenagers in libraries. These data literacy sessions will provide teens with opportunities to engage in critical data practices and inquiry in the context of issues they identify as being important to them. The project team will conduct research on the methods that support youths' co-design of critical data literacy programs. This project will result in a model of a youth-driven educational program that can be scaled and enacted in libraries and informal settings nationwide, with the ultimate purpose of fostering a more empowered, data-literate citizenry.

The project will recruit 25 teenagers ages 13-17, including those from underrepresented groups, to co-design and implement four to six 90-minute critical data literacy sessions in a public library. The research team will use design-based participatory research to study the process of co-design, and they will improve this co-design process with three additional cohorts of 25 teenagers each. This study will answer the following three research questions: (1) How can critical data literacy be supported within the sociohistorical context of the public library in ways that speak to young people? (2) How can the affordances of co-design scaffold meaningful informal learning about critical data literacy? (3) What do the designs and artifacts created by young people say about sustained engagement and learning with regard to facets of critical data literacy? To answer these questions, the research team will use thematic and descriptive coding to analyze data sources such as interviews and focus groups with teens and library staff, observations of critical data literacy sessions, youth-generated artifacts, and surveys with youth participants. Empirical findings will be disseminated widely through professional networks, conferences, and journals for informal educators, educational researchers, and information scientists, and the co-design model will be disseminated widely to practitioners of informal science education. This project is funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This Pilot and Feasability Study award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Leanne Bowler Mark Rosin Irene Lopatovska
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

Making, which supports interest-driven skill-development and learning, has been recognized as having the potential to engage underserved youth in STEM. Makerspaces are community spaces that allow participants to create items using tools, such as 3-D printers, computer-aided design, and digital fabrication technologies. Makerspaces and making-related programs are often inaccessible, unaffordable, or simply not available to underserved youth. Digital Harbor will partner with recreation centers, two in Pittsburgh and two in Baltimore, to research, refine and implement an equity-based approach to making that will engage underserved youth aged 12-16 in making. The project will prepare out-of-school time (OST) educators to collaboratively develop culturally sensitive curricula with underserved youth to engage them in maker-based technology and computer science experiences. The project will (1) design a professional development program that will prepare and support local educators to collaboratively design and deliver localized, maker-based, STEM curricula; (2) research the impact of these programs on both educators' and youth's self-efficacy, creativity, and attitudes towards STEM; and (3) develop and evaluate an online Localization Toolkit that will prepare educators in makerspaces across the nation in using an equity-based approach to create localized content. The project will result in four new maker sites (two in Baltimore and two in Pittsburgh directly impact 4 sites (10 educators and 240 youth). The project will result several resources that will support the development and educational programs of other community sites. The resources will include the Localization Toolkit, Case Studies, Best Practices, and Research Study. The Localization Toolkit has the potential to strengthen infrastructure and capacity building in OST maker-based programs, as well as other informal and formal education programs using similar pedagogies and design principles.

The project will use a mixed-methods approach in researching the challenges and processes involved in establishing the four maker sites in Baltimore and Pittsburgh, the approaches and effectiveness of the professional development program on OST educators, and the impacts of the project of participation on the self-efficacy, creativity, and attitudes on participating youth and educators. The research study will apply several instruments and data collection sources to develop quantitative data, including youth attendance logs, the Upper Elementary and Middle/High School Student Attitudes toward STEM survey, a retrospective technology self-efficacy survey and pre-post surveys. In addition to project document review, the researchers will collect qualitative data through educator interviews, educator focus groups, and youth focus groups. Project research and resources will reach key audiences of learning scientists and OST educators through articles in peer-reviewed and practitioner journals, public events and professional conferences. These audiences will also be reached through the project website, which will share project resources. The project will reach OST sites across the country directly through dissemination partners, including the National Recreation and Parks Association, Association of Science and Technology Centers, and statewide out-of-school networks.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Foad Hamidi Andrew Coy
resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource project Professional Development, Conferences, and Networks
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE: -
TEAM MEMBERS: Robert Westervelt Carol Lynn Alpert Ray Ashoori Tina Brower-Thomas
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This Research in Service to Practice project will address the issues around Informal Education of rural middle school students who have high potential regarding academic success in efforts to promote computer and IT knowledge, advanced quantitative knowledge, and STEM skills. Ten school districts in rural Iowa will be chosen for this study. It is anticipated that new knowledge on rural informal education will be generated to benefit the Nation's workforce. The specific objectives are to understand how informal STEM learning shapes the academic and psychosocial outcomes of rural, high-potential students, and to identify key characteristics of successful informal STEM learning environments for rural, high-potential students and their teachers. The results of this project will provide new tools for educators to increase the flow of underserved students into STEM from economically-disadvantaged rural settings.

The President's Council of Advisors on Science and Technology predicts a rapid rise in the number of STEM jobs available in the next decade, describing an urgent need for students' educational opportunities to prepare them for this workforce. In 2014, 62% of CEOs of major US corporations reported challenges filling positions requiring advanced computer and information technology knowledge. The project team will use a mixed methods approach, integrating comparative case study and mixed effects longitudinal methods, to study the Excellence program. Data sources include teacher interviews, classroom observations, and student assessments of academic aptitude and psychosocial outcomes. The analysis and evaluation of the program will be grounded in understanding the local efforts of school districts to build curriculum responsive to the demands of their high-potential student body. The project design, and subsequent analysis plan, utilizes a mixed methods approach, incorporating case study and longitudinal quantitative methods to analyze naturalistic data and build robust evidence for the implementation and impact of this program. This project will provide significant insights in how best to design, implement, and support informal out-of-school learning environments to broaden participation in the highest levels of STEM education and careers for under-resourced rural students.
DATE: -
TEAM MEMBERS: Susan Assouline
resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir
resource project Media and Technology
Citizen science engages members of the public in science. It advances the progress of science by involving more people and embracing new ideas. Recent projects use software and apps to do science more efficiently. However, existing citizen science software and databases are ad hoc, non-interoperable, non-standardized, and isolated, resulting in data and software siloes that hamper scientific advancement. This project will develop new software and integrate existing software, apps, and data for citizen science - allowing expanded discovery, appraisal, exploration, visualization, analysis, and reuse of software and data. Over the three phases, the software of two platforms, CitSci.org and CyberTracker, will be integrated and new software will be built to integrate and share additional software and data. The project will: (1) broaden the inclusivity, accessibility, and reach of citizen science; (2) elevate the value and rigor of citizen science data; (3) improve interoperability, usability, scalability and sustainability of citizen science software and data; and (4) mobilize data to allow cross-disciplinary research and meta-analyses. These outcomes benefit society by making citizen science projects such as those that monitor disease outbreaks, collect biodiversity data, monitor street potholes, track climate change, and any number of other possible topics more possible, efficient, and impactful through shared software.

The project will develop a cyber-enabled Framework for Advancing Buildable and Reusable Infrastructures for Citizen Science (Cyber-FABRICS) to elevate the reach and complexity of citizen science while adding value by mobilizing well-documented data to advance scientific research, meta-analyses, and decision support. Over the three phases of the project, the software of two platforms, CitSci.org and CyberTracker, will be integrated by developing APIs and reusable software libraries for these and other platforms to use to integrate and share data and software. Using participatory design and agile methods over four years, the project will: (1) broaden the inclusivity, accessibility, and reach of citizen science; (2) elevate the value and rigor of citizen science software and data; (3) improve interoperability, usability, scalability and sustainability of citizen science software and data; and (4) mobilize data to allow cross-disciplinary research and meta-analyses. These outcomes benefit society by making citizen science projects and any number of other possible topics more possible, efficient, and impactful through shared software and data. Adoption of Cyber-FABRICS infrastructure, software, and services will allow anyone with an Internet or cellular connection, including those in remote, underserved, and international communities, to contribute to research and monitoring, either independently or as a team. This project is also being supported by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Gregory Newman Louis Liebenberg Stacy Lynn Melinda Laituri