Skip to main content

Community Repository Search Results

resource research Media and Technology
The popularity of the anti-vax movement in the United States and elsewhere is the cause of new lethal epidemics of diseases that are fully preventable by modern medicine [Benecke and DeYoung, 2019]. Creationism creeps into science classrooms with the aim of undermining the teaching of evolution through legal obligations or school boards’ decisions to present both sides of a debate largely foreign to the scientific community [Taylor, 2017]. And one simply has to turn on the TV and watch so-called science channels to be bombarded with aliens, ghosts, cryptids and miracles as though they are
DATE:
TEAM MEMBERS: Alexandre Schiele
resource research Media and Technology
The study contributes to mediatization research. Mediatization is understood as a process during which individual and collective actors adapt towards the demands of publicity and public attention. The manuscript introduces a differentiation of mediatization strategies, ranging from defensive to offensive strategies. This conceptual differentiation is applied empirically regarding relevant stakeholders within the German science-policy constellation from politics, science, and science funding. Results are based on 35 in-depth interviews with decision makers. The results section deals with
DATE:
TEAM MEMBERS: Andreas Scheu
resource research Media and Technology
How a discipline's history is written shapes its identity. Accordingly, science communicators opposed to cultural exclusion may seek cross-cultural conceptualizations of science communication's past, beyond familiar narratives centred on the recent West. Here I make a case for thinking about science communication history in these broader geotemporal terms. I discuss works by historians and knowledge keepers from the Indigenous Australian Yorta Yorta Nation who describe a geological event their ancestors witnessed 30,000 ybp and communicated about over generations to the present. This is likely
DATE:
TEAM MEMBERS: Lindy Orthia
resource research Media and Technology
Today, science and politics are in a complex status of reciprocal dependency. Politics is dependent on scientific expertise in order to adequately address highly complex social problems, and science is fundamentally dependent on public funding and on political regulation. Taken together, the diverse interactions, interrelations and interdependencies of science and politics create a heterogenous and complex patchwork — namely, the science-policy interface. The societal relevance for phenomena such as scientific policy advice, science governance or (politically fostered) science communication
DATE:
TEAM MEMBERS: Birte Fähnrich Alexander Ruser
resource research Public Programs
Policymakers need data to make informed decisions. Local governments need data to justify policies like bans on single-use plastics. Federal agencies need information to set the conservation guidelines that protect endangered species. Data are also required to report on progress towards international policy targets, like the UN Sustainable Development Goals (SDGs). But worldwide, we don’t have enough data to understand the current state of our environment, or effectively evaluate the impact of interventions. In 2018, Washington, DC banned plastic drinking straws while citing evidence that 3
DATE:
TEAM MEMBERS: Anne Bowser Alex Long Metis Meloche Elizabeth Newbury Meg King
resource research Media and Technology
At the beginning of May, 2018, the European Commission has presented its proposal for Horizon Europe, the framework programme which defines priorities and budget distribution for the future of European Research and Innovation (2021–2027). The announcement has raised concerns within the community of stakeholders engaged in Responsible Research and Innovation (RRI), a democratization process leading to connecting science to the values and interests of European citizens by mean of participatory processes. Through this flash commentary we aim at providing a wide range of arguments, as well as
DATE:
TEAM MEMBERS: Marzia Mazzonetto Angela Simone
resource research Public Programs
This guide grows out of the research project “Evidence-based Science Communication with Policymakers” conducted by the four authors and sponsored by the National Academy of Sciences and the Rita Allen Foundation. In order to write these recommendations, we spent over a year studying science communication with policymakers from several vantage points. We reviewed hundreds of scholarly works on the topic published in over a dozen fields as well as numerous practical guides written by scientific societies. We interviewed both Democratic and Republican Congressional policymakers, including 22
DATE:
TEAM MEMBERS: Elizabeth Suhay Emily Cloyd Erin Heath Erin Nash
resource research Public Programs
Citizen science, the active participation of the public in scientific research projects, is a rapidly expanding field in open science and open innovation. It provides an integrated model of public knowledge production and engagement with science. As a growing worldwide phenomenon, it is invigorated by evolving new technologies that connect people easily and effectively with the scientific community. Catalysed by citizens’ wishes to be actively involved in scientific processes, as a result of recent societal trends, it also offers contributions to the rise in tertiary education. In addition
DATE:
TEAM MEMBERS: Susanne Hecker Muki Haklay Anne Bowser Zen Makuch Johannes Vogel Aletta Bonn
resource research Public Programs
This article provides an overview of the Chief Science Officer program launched in 2015 by Arizona SciTech. Students vote for one of their peers to become a STEM advocate in their school. These Chief Science Officers select and promote STEM programming, connect with STEM organizations to bring STEM programming to their communities, or participate in local and state conversations on education and the workforce.
DATE:
TEAM MEMBERS: Jeremy Babendure Nagib Balfakih Susan Farretta Becky Hughes
resource project Professional Development and Workshops
For the United States to maintain its leading role on the world economic stage, it is essential to strengthen the American workforce in science, technology, engineering, and mathematics (STEM). Our current prosperity and our future success hinge on recruiting, training, and employing the creative and industrious STEM professionals who drive the innovation economy. Strengthening the American STEM workforce depends, in part, on broadening participation to students from demographics that have traditionally been underrepresented in STEM. This NSF INCLUDES Launch Pilot project will foster recruitment, training, and employment for indigenous STEM students, where the term "indigenous" comprises the terms Native American, American Indian, Alaskan Native, and Hawaiian Native. Specifically, this project will support the design and development of a first-of-its-kind network focused on environmental stewardship of indigenous lands. The network will comprise both tribal and government partners and will be organized by three faculty at the University of Colorado-Denver. Student recruitment, training, and employment will be organized around the unifying principle of land stewardship. The focus on land stewardship has been selected not only because it demands the expertise of STEM professionals, but also because land stewardship is among the top motivations for indigenous students considering STEM careers. Accordingly, this work is important on several fronts: It addresses the recognized need for STEM professionals; it broadens participation to students from underrepresented groups; and it provides a test bed for collective action by a first-of-its-kind network of tribal, government, and university partners.

The proposed network will work together to design, deploy, and debug a unique educational program giving students an opportunity to train for employment as tribal liaisons in the environmental field. In particular, this program will address the need for culturally-sensitive, scientifically-trained individuals who can serve as tribal liaisons between tribal and non-tribal organizations, which will allow them to prevent, minimize, or manage environmental incidents through their understanding of STEM principles and organizational dynamics. All students in this educational program will earn a regular four-year STEM degree, but a key feature of the program is that they will also participate in training and internships designed to provide background with nontechnical matters such as cultural awareness, environmental regulations, and organizational dynamics. Additionally, this educational program is designed to support recruitment of indigenous students by (1) providing a clear vision of a high-impact, culturally-relevant professional career and by (2) providing a cultural connection with obtaining a college degree. Taken together, the network aims to increase enrollment, retention, graduation, and alumni activity by indigenous students. Best practices and strategies for collective impact will be used to document achievement of the network in increasing the enrollment, retention, graduation, and alumni activity of indigenous students in higher education and in STEM careers. Continuous feedback will be collected to assess partner engagement and durability, and student satisfaction, performance, and progress. The network is expected to be sustainable because it addresses a demonstrated need; it is expected to be scalable because scientifically aware, culturally-sensitive individuals who can serve as tribal liaisons are needed not only regionally, but nationally.
DATE: -
TEAM MEMBERS: Timberley Roane David Mays Rafael Moreno-Sanchez Brenda Allen Grace RedShirt Tyon
resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai
resource project Professional Development, Conferences, and Networks
The American Association for the Advancement of Science (AAAS) and the National Science Foundation (NSF) will continue its collaboration in providing to early- and mid-career scientists and engineers experiential professional development and public service fellowships via the AAAS Science and Technology Fellowship Program. Consistent with the immersion model adopted by AAAS, Fellows at NSF will be selected annually through a competitive process and placed in organizations throughout the Foundation. Fellows will work with NSF staff on a broad range of activities in order to gain insight into how national science and technology policy goals are translated into and reflected by NSF's mission and strategic goals and how and by whom national science and technology policy is driven, shaped and prioritized. NSF fellowship assignments are designed to: educate and expose Fellows to NSF programmatic planning, development and oversight activities in all fields of fundamental research via hands-on engagement; utilize the Fellows' expertise on projects that apprise NSF officials in areas of mutual interest to the Fellow and the host organization; and provide developmental opportunities to inform future career decisions. The program includes an orientation on executive branch and congressional operations, as well as a year-long suite of knowledge- and skill-building seminars involving science, technology and public policy within the federal as well as NSF contexts.

In the long-term, the AAAS Fellowship program seeks to build leadership capacity for a strong national science and engineering enterprise. Upon completion of the Fellowship, Fellows will have gained: a broader understanding and increased insights about the development and execution of federal-level science, technology, engineering and mathematics policies and initiatives as well as how policy and science intersect; enhanced skills in communicating science to support policy development; and a greater capacity to serve more effectively in future leadership roles in diverse environments, including public and policy arenas, academia and the private sector. The ultimate outcome of the Fellowship program experience -- policy savvy science and engineer leaders who understand government and policymaking and are well-trained to develop and execute solutions to address the nation's challenges.
DATE: -
TEAM MEMBERS: Olga Francois Cynthia Robinson