Skip to main content

Community Repository Search Results

resource research Media and Technology
The project team is developing and testing a prototype of a computer science game-based intervention intended for Grade 1 students. The prototype will include physical robots that will be designed and controlled on a game board by students through a blue-tooth enabled smartphone app. The product will include teacher resources and suggestions to facilitate classroom integration. In the Phase I pilot research with 5 classrooms and 150 students, the researchers will examine whether the prototype functions as planned, if teachers are able to implement it with small groups of students, and whether
DATE:
TEAM MEMBERS: Adrianna Mocscatelli
resource research Public Programs
This report introduces a framework to support learning in library and museum makerspaces. The framework demonstrates how we can create the conditions for ambitious learning experiences to unfold within the making experience.
DATE:
TEAM MEMBERS: Children's Museum of Pittsburgh Institute of Museum and Library Services Peter Wardrip
resource project Media and Technology
In prior research and development, the project team developed PocketLab, a set of web-based hands-on science simulations for middle school classrooms. With this Phase I funding, the team will develop and test a prototype of CloudLab, a classroom management platform to extend the functionality of PocketLab. The prototype will include a portal so that a class of students can collaborate on experiments, a lab notebook to analyze experimental data with graphing tools, and a teacher dashboard to monitor student progress in real time. In the Phase I pilot research, with six middle school teachers and 150 students, the project team will examine whether the prototype functions as planned, whether teachers are able to integrate it within the classroom environment, and whether students are engaged while using the prototype.
DATE: -
TEAM MEMBERS: Clifton Roozebook
resource research Public Programs
In this essay, Shirin Vossoughi, Paula Hooper, and Meg Escude advance a critique of branded, culturally normative definitions of making and caution against their uncritical adoption into the educational sphere. The authors argue that the ways making and equity are conceptualized can either restrict or expand the possibility that the growing maker movement will contribute to intellectually generative and liberatory educational experiences for working-class students and students of color. After reviewing various perspectives on making as educative practice, they present a framework that treats
DATE:
TEAM MEMBERS: Shirin Vossoughi Paula Hooper Meg Escude
resource project Media and Technology
Co-led by the University of Washington and Science Gallery Dublin, this project aims to drive and transform the next generation of broadening participation efforts targeting teen-aged youth from communities historically underrepresented in STEM fields. This project investigates how out-of-school time (OST) programs that integrate epistemic practices of the arts, sciences, computer science, and other disciplines, in the context of consequential activities (such as creating radio segments, designing museum exhibitions, or building online games), can more broadly appeal to and engage youth who do not already identify as STEM learners. STEM-related skills and capacities (such as computational thinking, design, data visualizations, and digital storytelling) are key to productive and creative participation in many future civic and workplace activities, and are driving the 30 fastest-growing occupations in the US. But many new jobs will entail a hybrid blend of skills, such as programming and design skills that many students who have disengaged with academic STEM pathways may already have and would be eager to develop further. There is not currently a strong foundation of research-based evidence to guide the design, implementation, and evaluation transdisciplinary programs - in which STEM skills are embedded as tools for meaningful participation - or how such approaches relate to long-term outcomes. Hypothesizing that OST programs which effectively engage youth during their high-leverage teenage years can significantly impact youths' longer-term STEM learning trajectories, this project will involve: 1) Five 3-year studies documenting learning in different technology-rich contexts: Making Afterschool, Media Production, Museum Exhibition Design, Digital Arts Programs, and Pop-Up/Street Science Programs; 2) A 4-year longitudinal study, involving 100 youth from the above programs; 3) The creation of a number of practical measurement tools that can be used to monitor how programs are leveraging the intersections of the arts and sciences to support student engagement and learning; and 4) A Professional Development program conducted at informal science education conferences in the EU and US to engage the informal STEM field with emerging findings. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences to better understand, strengthen, and coordinate STEM engagement and learning. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments.

Transdisciplinary, equity-oriented OST programs can provide supportive social contexts in which STEM concepts and practices are taken up as the means for meaningful participation in valued activities, building students' STEM skills in ways that can propel their future academic, career, and lifelong learning choices. This project will build the knowledge base about these emerging 21st century transdisciplinary approaches to broadening participation investigating: 1) The epistemic intersections across a range of disciplines (art, science, computation, design) that operate to broaden appeal and meaningful participation for underrepresented youth; 2) How transdisciplinary activities undertaken in the context of consequential learning (e.g., producing a radio segment, designing an exhibition for the general public) can illuminate the relevance of STEM to young people's lives, concerns, and futures; and 3) How participation in such programs can propel students' longer-term life choices and STEM learning trajectories. The project is a collaboration of the University of Washington, Science Gallery Dublin, Indiana University, Youth Radio in Oakland California, Guerilla Science in New York and London, and the London School of Economics.
DATE: -
resource research Public Programs
Large gaps in achievement and interest in science and engineering [STEM] persist for youth growing up in poverty, and in particular for African American and Latino youth. Within the informal community, the recently evolving “maker movement” has evoked interest for its potential role in breaking down longstanding barriers to learning and attainment in STEM, with advocates arguing for its “democratizing effects.” What remains unclear is how minoritized newcomers to a makerspace can access and engage in makerspaces in robust and equitably consequential ways. This paper describes how and why
DATE:
resource research Public Programs
In this paper we investigated the role youth participatory ethnography played as a pedagogical approach to supporting youth in making. To do so, we examined in-depth cases of youth makers from traditionally marginalized communities in two makerspace clubs in two different mid-sized US cities over the course of three years. Drawing from mobilities of learning studies and participatory frameworks, our findings indicate that participatory ethnography as pedagogical practice repositioned youth and making by helping to foreground youths’ relationality to people, communities, activities and
DATE:
resource project Public Programs
While the term 'failure' brings to mind negative associations, there is a current focus on failure as a driver of innovation and development in many professional fields. It is also emerging from prior research that for STEM professionals and educators, failure plays an important role in designing and making to increase learning, persistence and other noncognitive skills such as self-efficacy and independence. By investigating how youth and educators attend to moments of failure, how they interpret what this means, and how they respond, we will be better able to understand the dynamics of each part of the experience. The research team will be working with youth from urban, suburban and rural settings, students from Title I schools or who qualify for free/reduced-price lunches, those from racial and ethnic minority groups, as well as students who are learning English as a second language. These youth are from groups traditionally underrepresented in STEM and in making, and research indicates they are more likely to experience negative outcomes when they experience failure.

The intellectual merit of this project centers on establishing a baseline understanding of how failure in making is triggered and experienced by youth, what role educators play in the process, and what can be done to increase persistence and learning, rather than failure being an end-state. The research team will investigate these issues through the use of qualitative and quantitative research methods. In particular, the team will design and evaluate the effectiveness of interventions on increasing the abilities of youth and educators in noticing and responding to failures and increasing positive (e.g., resilience) outcomes. Research sites are selected because they will allow collection of data on youth from a wide range of backgrounds. The research team will also work to test and revise their hypothesized model of the influence of factors on persistence through failures in making. This project is a part of NSF's Maker Dear Colleague Letter (DCL) portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering (CISE), Education and Human Resources (EHR) and Engineering (ENG).
DATE: -
TEAM MEMBERS: Adam Maltese Amber Simpson Alice Anderson
resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir
resource research Public Programs
Born from individual basement tinkerers and garage-mechanic hobbyists, the Maker Movement has evolved to support a strong community among makers. Makers increasingly gather together in makerspaces, hackerspaces, tech shops, and fab labs, where groups composed of diverse ages, genders and backgrounds are motivated to learn with and from one another how to use and combine materials, tools, processes, and disciplinary practices in novel ways. The growth of the international Maker Faires’ annual showcases of makers’ inventions and investigations have become celebrated meccas of maker culture
DATE:
resource project Public Programs
This project takes an ethnographic and design-based approach to understanding how and what people learn from participation in makerspaces and explores the features of those environments that can be leveraged to better promote learning. Makerspaces are physical locations where people (often families) get together to make things. Some participants learn substantial amounts of STEM content and practices as they design, build, and iteratively refine working devices. Others, however, simply take a trial and error approach. Research explores the affordances are of these spaces for promoting learning and how to integrate technology into these spaces so that they are transformed from being makerspaces where learning happens, but inconsistently, into environments where learning is a consistent outcome of participation. One aim is to learn how to effectively design such spaces so that participants are encouraged and helped to become intentional, reflective makers rather than simply tinkerers. Research will also advance what is known about effective studio teaching and learning and advance understanding of how to support youth to help them become competent, creative, and reflective producers with technology(s). The project builds on the Studio Thinking Framework and what is known about development of meta-representational competence. The foundations of these frameworks are in Lave and Wengers communities of practice and Rogoff's, Stevens et al.'s, and Jenkins et al.'s further work on participatory cultures for social networks that revolve around production. A sociocultural approach is taken that seeks to understand the relationships between space, participants, and technologies as participants set and work toward achieving goals. Engaging more of our young population in scientific and technological thinking and learning and broadening participation in the STEM workplace are national imperatives. One way to address these imperatives is to engage the passions of young people, helping them recognize the roles STEM content and practices play in achieving their own personal goals. Maker spaces are neighborhood spaces that are arising in many urban areas that allow and promote tinkering, designing, and construction using real materials, sometimes quite sophisticated ones. Participating in designing and successfully building working devices in such spaces can promote STEM learning, confidence and competence in one's ability to solve problems, and positive attitudes towards engineering, science, and math (among other things). The goal in this project is to learn how to design these spaces and integrate learning technologies so that learning happens more consistently (along with tinkering and making) and especially so that they are accessible and inviting to those who might not normally participate in these spaces. The work of this project is happening in an urban setting and with at-risk children, and a special effort is being made to accommodate making and learning with peers. As with Computer Clubhouses, maker spaces hold potential for their participants to identify what is interesting to them at the same time their participation gives them the opportunity to express themselves, learn STEM content, and put it to use.
DATE: -
resource research Public Programs
Through a comparative case study, Sheridan and colleagues explore how makerspaces may function as learning environments. Drawing on field observations, interviews, and analysis of artifacts, videos, and other documents, the authors describe features of three makerspaces and how participants learn and develop through complex design and making practices. They describe how the makerspaces help individuals identify problems, build models, learn and apply skills, revise ideas, and share new knowledge with others. The authors conclude with a discussion of the implications of their findings for this
DATE:
TEAM MEMBERS: Kim Sheridan Erica Halverson Breanne Litts Lisa Brahms Lynette Jacobs-Priebe Trevor Owens