Skip to main content

Community Repository Search Results

resource research Public Programs
Robotic Autonomy is a seven-week, hands-on introduction to robotics designed for high school students. The course presents a broad survey of robotics, beginning with mechanism and electronics and ending with robot behavior, navigation and remote teleoperation. During the summer of 2002, Robotic Autonomy was taught to twenty eight students at Carnegie Mellon West in cooperation with NASA/Ames (Moffett Field, CA). The educational robot and course curriculum were the result of a ground-up design effort chartered to develop an effective and low-cost robot for secondary level education and home use
DATE:
TEAM MEMBERS: Illah Nourbakhsh Kevin Crowley Ajinkya Bhave Emily Hamner Thomas Hsiu Andres Perez-Bergquist Steve Richards Katie Wilkinson
resource research Media and Technology
How can research on teaching and learning be used to improve the design of e-content? The contents of this report are based on a series of seminars conducted during 2003 and 2004, funded by the Economic & Social Research Council (ESRC), that were coordinated by Lydia Plowman, University of Stirling. They were also sponsored by a number of organisations including Futurelab. Each seminar was attended by researchers from universities, creators and managers of companies that make educational resources, and people engaged in policy making or representing Government agencies
DATE:
TEAM MEMBERS: Lydia Plowman
resource project Public Programs
The Nanoscale Science and Engineering Center entitled New England Nanomanufacturing Center for Enabling Tools is a partnership between Northeastern University, the University of Massachusetts Lowell, the University of New Hampshire, and Michigan State University. The NSEC unites 34 investigators from 9 departments. The NSEC is likely to impact solutions to three critical and fundamental technical problems in nanomanufacturing: (1) Control of the assembly of 3D heterogeneous systems, including the alignment, registration, and interconnection at three dimensions and with multiple functionalities, (2) Processing of nanoscale structures in a high-rate/high-volume manner, without compromising the beneficial nanoscale properties, (3) Testing the long-term reliability of nano components, and detect, remove, or prevent defects and contamination. Novel tools and processes will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanorods, and proteins) and polymer nanostructures. This Center will contribute a fundamental understanding of the interfacial behavior and forces required to assemble, detach, and transfer nanoelements, required for guided self-assembly at high rates and over large areas. The Center is expected to have broader impacts by bridging the gap between scientific research and the creation of commercial products by established and emerging industries, such as electronic, medical, and automotive. Long-standing ties with industry will also facilitate technology transfer. The Center builds on an already existing network of partnerships among industry, universities, and K-12 teachers and students to deliver the much-needed education in nanomanufacturing, including its environmental, economic, and societal implications, to the current and emerging workforce. The collaboration of a private and two public universities from two states, all within a one hour commute, will lead to a new center model, with extensive interaction and education for students, faculty, and outreach partners. The proposed partnership between NENCET and the Museum of Science (Boston) will foster in the general public the understanding that is required for the acceptance and growth of nanomanufacturing. The Center will study the societal implications of nanotechnology, including conducting environmental assessments of the impact of nanomanufacturing during process development. In addition, the Center will evaluate the economic viability in light of environmental and public health findings, and the ethical and regulatory policy issues related to developmental technology.
DATE: -
TEAM MEMBERS: Ahmed Busnaina Nicol McGruer Glen Miller Carol Barry Joey Mead
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Media and Technology
This project continues the development, testing, and use of a series of web-based computer simulations for improving the teaching and learning of physics. It expands the number of simulations in physics, creates new simulations addressing introductory chemistry, creates simulations addressing the conceptual understanding of equations in solving science problems, and further refines some existing simulations. It increases, by approximately 35, the 35 online interactive simulations that have been developed for teaching physics. The project produces and widely disseminates on-line supporting materials for use in undergraduate and high school science courses. The supporting materials include: guided-discovery, tutorial worksheets; a list of learning goals; materials to support in-lecture, homework, and laboratory use; assessment instruments; and other user-contributed materials. The simulations being introduced and their effectiveness are being evaluated in at least eight additional courses in physics and chemistry at the University of Colorado and a diverse set of partner institutions. The materials are being extensively tested to ensure that they are easy to use and effective at promoting deep conceptual understanding and positive attitudes about science and technology.
DATE: -
TEAM MEMBERS: Carl Wieman Noah Finkelstein Katherine Perkins