Skip to main content

Community Repository Search Results

resource project Public Programs
While there is increased interest in youth-centered maker programs in informal educational contexts, scarce research-informed professional development exist that focus on how informal educators do or should plan and handle ongoing, just-in-time support during moments of failure. Prior research supports the important role of failure in maker programming to increase learning, resilience and other noncognitive skills such as self-efficacy and independence. The objective of this project is to address this gap through adapting, implementing, and refining a professional development program for informal educators to productively attend, interpret, and respond to youths’ experiences with failure while engaged in maker programs in informal learning contexts. In the first two years of the project, the research team will work closely with six partners to implement and refine the professional development model: The Tech Museum of Innovation, The Bakken Museum, Montshire Museum of Science, The Minneapolis Institute of Art, Thinkery, and Amazeum Children’s Museum. In the last year of the project, the team will scale-up the professional development model through partnering with an additional nine institutions implementing maker programming for youth. The professional development consists of two models. In the first model, we support one to two lead facilitators at each partnering institution through an initial three-day workshop and ongoing support meetings. In the second model, the lead facilitators support other informal educators at their institution implementing making programs for youth. This project will enhance the infrastructure for research and education as collaborations and professional learning communities will be established among a variety of informal learning institutions. The project will also demonstrate a link between research and institutional and societal benefits through shifting the connotation and perceptions of failure to be valued for its educational potential and to empower informal educators to support discomfort and struggle throughout maker programs with youth.

The three goals of this collaborative project are to (a) advance the field of informal education through a research-based professional development program specific to youths’ failures during maker programs; (b) support shifts in informal educators’ facilitation practices and perspectives around youth’s failure experiences, and (c) investigate the effects of the professional development on youths’ resilience and failure mindset. The iterative nature of this project will be informed by the collection and analysis of video data of professional development sessions and informal educators facilitating maker programs, reflective journaling, surveys regarding the professional development, and pre-post surveys from youth engaged in the maker programs. Dissemination will address multiple stakeholders, including informal educators, program developers, evaluators, researchers, and public audiences.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
resource project Professional Development, Conferences, and Networks
Potential STEM talent is lost each day for some of the most underserved and underrepresented populations in our nation's incarcerated men, women, and youth. With years devoid of quality STEM education and opportunities while in prison, incarcerated individuals are often significantly underprepared in STEM and for the STEM workforce. This educational debt exacerbates the pattern of marginalization for these vulnerable populations. Their STEM literacy, employability and potential for earning sustainable wages upon release are stifled. This deficit in opportunity is especially stark for underrepresented groups in the United States. Roughly 61% of the prison population is non-white, which far exceeds the national average of 35%. The U.S. also has the highest per capita incarceration rates in the world, incarcerating 698 men, women, and youth for every 100,000 people. Equally unsettling, for the first time in American history the population growth rate for incarcerated women has outpaced men by almost 2 to 1 for the past 25 years. While there are many contributing factors to the high rate of incarceration in the U.S., high quality prison STEM education programs have been shown to help counter socio-economic and education debts through greater STEM knowledge attainment, successful societal integration, and increased wage and advancement potential, which increase the likelihood that formerly incarcerated individuals and their children can live productive lives. The NSF INCLUDES STEM Opportunities in Prison Settings (STEM-OPS) Alliance endeavors to build a national network aimed at providing and supporting viable pathways to STEM for the incarcerated and formerly incarcerated. Using a collective impact approach, the Alliance will work collaboratively with key stakeholders and the target population to advance extant and untapped knowledge on high quality prison STEM education and opportunities. This work builds on efforts supported by the National Science Foundation, including exploratory work piloted by two NSF INCLUDES Design and Development Launch Pilots. If successful, this Alliance has the potential to significantly transform the face of the STEM workforce and the narrative regarding the incarcerated and formerly incarcerated and their potential to succeed in STEM.

The STEM-OPS Alliance is comprised of partner organizations committed to ensuring that STEM preparation during and post incarceration is commonplace and successful. During its first year, the Alliance will focus on establishing its national network through a shared vision and goals and a collective impact approach. It will conduct systems ecology mapping to inform the supports and resources needed for the target population to succeed in STEM. Focus groups and interviews will be conducted with incarcerated middle/high school aged youth to better understand their experiences in K-12 schools and with STEM education prior to and during incarceration. The results of the mapping and youth study will be used to inform the future work of the Alliance. Affordances the network endeavors to achieve include: (a) creating accessible STEM opportunities for the target populations through STEM courses, in-prison laboratories, research experiences for undergraduates (REUs), internships, and mentoring, (b) a culturally responsive platform to connect formerly incarcerated job seekers with STEM employment opportunities, (c) an evidence-based toolkit for effective STEM in-prison program design and implementation, (d) an annual convening of key stakeholders and representatives from the target populations to share learnings, disseminate findings and resources, and support the growth and development of the Alliance, and (d) leveraging connections to the greater NSF INCLUDES National Network. A formative and summative evaluation will be conducted by an external evaluator. Through its network, the STEM OPS Alliance is well poised to directly impact 700-880 incarcerated and formerly incarcerated men and women and reach a significant number of organizations working to improve STEM opportunities and outcomes within prison contexts.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. Significant co-funding has also been provided by the NSF Innovative Technology Experiences for Students and Teachers (ITEST) program and the NSF Advancing Informal STEM Learning Program (AISL).

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Eden Badertscher Stanley Andrisse Jannette Carey Rich Milner
resource research Public Programs
In this article I critically examine the historical context of science education in a natural history museum and its relevance to using museum resources to teach science today. I begin with a discussion of the historical display of race and its relevance to my practice of using the Museum’s resources to teach science. I continue with a critical review of the history of the education department in a natural history museum to demonstrate the historical constitution of current practices of the education department. Using sociocultural constructs around identity formation and transformation, I
DATE:
TEAM MEMBERS: Jennifer Adams
resource research Public Programs
In this article we describe a model designed for rural settings that uses community-based “STEM Guides” as human brokers to engage isolated 10- to 18-year-old youth in STEM. The STEM Guides connect youth with opportunities that already exist in their communities, including after-school programs, clubs, camps, library activities, special events, contests, and competitions. STEM Guides also introduce youth and their families to virtual opportunities, such as citizen science monitoring, and statewide experiences, such as the Maine State Science Fair.
DATE:
TEAM MEMBERS: Jan Mokros Jennifer Atkinson Sue Allen Alyson Saunders Kate Kastelein
resource research Public Programs
This article describes the research and development of an NSF-funded, five-year experimental program to strengthen informal (out-of-school) STEM learning by youth in five rural communities. The central component of the model was a cadre of community members known as ‘STEM Guides’ who were hired to work as brokers between youth and the STEM learning resources potentially available to them. These STEM Guides were respected adults with credible connections to youth, flexible schedules, the ability to travel within the community, and enthusiasm for identifying local STEM resources. The Guides were
DATE:
TEAM MEMBERS: Sue Allen Kate Kastelein Jan Mokros Jennifer Atkinson Scott Byrd
resource evaluation Public Programs
This document is the final summative evaluation report written by EDC, the external evaluator of the STEM Guides project. The report concludes that the project was highly ambitious, with many dynamic and evolving pieces. It was deemed successful as a model of brokering connections between students aged 10-18 and STEM resources and opportunities in rural Maine communities. The STEM Guides program contributed to the increase in STEM awareness within each community, as well as connecting youth with interesting and relevant STEM experiences.
DATE:
TEAM MEMBERS: EDC
resource project Media and Technology
The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
DATE: -
resource research Professional Development, Conferences, and Networks
Today’s digital and online media demand an approach to learning keyed to a networked and interconnected world. The growth of online communities, social and online media, open educational resources, ubiquitous computing, big data, and digital production tools means young people are coming of age with a growing abundance of access to knowledge, information, and social connection. These shifts are tied to a host of new opportunities for interest-driven learning, creative expression, and diverse forms of contribution to civic, political, and economic life. Even learning of traditional academic
DATE:
TEAM MEMBERS: Mizuko Ito Richard Arum Dalton Conley Kris Gutierrez Ben Kirshner Sonia Livingstone Vera Michalchik Bill Penuel Kylie Peppler Nichole Pinkard Jean Rhodes Katie Salen Tekinbas Juliet Schor Julian Sefton-Green Craig Watkins Alicia Blum-Ross Lindsey Carfagna Crystle Martin R Mishael Sedas Nat Soti
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
This application requests support to enable a team of experienced science educators and biomedical and behavioral health network scientists to develop and implement the Worlds of Connections curriculum. Most middle school students are familiar with patient care-related health careers (e.g., nurses, dentists, surgeons), but few know about emerging careers in network science that can be leveraged to improve population health. This innovative and research-based science program is strategically designed to increase awareness of, understanding of, and interest in the important role of network science for health. This project will design learning activities that incite interest in network science applications to biomedical and public health research. The long- term goal is to enhance the diversity of the bio-behavioral and biomedical workforce by increasing interest in network science among members of underrepresented minority communities and to promote public understanding of the benefits of NIH-funded research for public health. The goal of this application is to identify and create resources that will overcome barriers to network science uptake among underserved minority middle school youth. The central hypothesis is that the technology-rich field of network science will attract segments of today’s youth who remain uninterested in conventional, bio-centric health fields. Project activities are designed to improve understanding of how informal STEM experiences with network science in health research can increase STEM identities, STEM possible selves, and STEM career aspirations among youth from groups historically underrepresented in STEM disciplines at the center of health science research (Aim 1) and create emerging media resources via augmented reality technologies to stimulate broad interest in and understanding of the role of network science in biomedical and public health research (Aim 2). A team led by University of Nebraska-Lincoln sociologists will partner with the University of Nebraska at Omaha; state museums; centers for math, science, and emerging media arts; NIH-funded network scientists; educators; community learning centers at local public schools; learning researchers; undergraduates; software professionals; artists; augmented reality professionals; storytellers; and evaluation experts to accomplish these goals and ensure out of school learning will reinforce Next Generation Science Standards. The Worlds of Connections project is expected to impact 35,250 youth and 20,570 educators in Lincoln and Omaha, Nebraska by: adding network science modules to ongoing 6th-8th-grade afterschool STEM clubs in community learning centers; adding network science for health resources to a summer graduate course on “activating youth STEM identities” for sixth to twelfth grade STEM teachers; connecting teachers with local network scientists; creating free, downloadable, high-quality emerging media arts-enhanced stories; and publishing peer-reviewed research on the potential of network science to attract youth to health careers. Coupled with the dissemination plan, the project design and activities will be replicable, allowing this project to serve as a model to guide other projects in STEM communication.

PUBLIC HEALTH RELEVANCE:
The lack of public understanding about the role of network science in the basic biological and social health sciences limits career options and support for historically underrepresented groups whose diverse viewpoints and questions will be needed to solve the next generation of health problems. The Worlds of Connections project will combine network science, social science, learning research, biology, computer science, mathematics, emerging media arts, and informal science learning expertise to build a series of monitored and evaluated dissemination experiments for middle school science education in high poverty schools. Broad dissemination of the curriculum and project impacts will employ virtual reality technologies to bring new and younger publics into health-related STEM careers.
DATE: -
TEAM MEMBERS: Julia Mcquilan Grace Stallworth
resource project Media and Technology
Twin Cities PBS BRAINedu: A Window into the Brain/Una ventana al cerebro, is a national English/Spanish informal education project providing culturally competent programming and media resources about the brain’s structure and function to Hispanic middle school students and their families. The project responds to the need to eliminate proven barriers to Hispanic students’ STEM/neuroscience education, increase Hispanic participation in neuroscience and mental health careers and increase Hispanic utilization of mental health resources.

The program’s goals are to engage Hispanic learners and families by


empowering informalSTEM educators to provide culturally competent activities about the brain’s structure and function;
demonstrating neuroscience and mental health career options; and
reducing mental health stigma, thus increasing help-seeking behavior.


The hypothesis underpinning BRAINedu’s four-year project plan is that participating Hispanic youth and families will be able to explain how the brain works and describe specific brain disorders; demonstrate a higher level of interest of neuroscience and mental health careers and be more willing to openly discuss and seek support for brain disorders and mental health conditions.

To achieve program goals, Twin Cities PBS (TPT) will leverage existing partnerships with Hispanic-serving youth educational organizations to provide culturally competent learning opportunities about brain health to Hispanic students and families. TPT will partner with neuroscience and mental health professionals, cultural competency experts and Hispanic-serving informal STEM educators to complete the following objectives:


Develop bilingual educational resources for multigenerational audiences;
Provide professional development around neuroscience education to informal educators, empowering them to implement programming with Hispanic youth and families, and
Develop role model video profiles of Hispanic neuroscience professionals, and help partner organizations produce autobiographical student videos.


We will employ rigorous evaluation strategies to measure the project’s impact on Hispanic participants: a) understanding of neuroscience and brain health, particularly around disorders that disproportionately affect the Hispanic community; b) motivation to pursue neuroscience or mental health career paths; and c) mental health literacy and help-seeking behavior. The project will directly reach 72 Hispanic-serving informal STEM educators and public health professionals, and 200 children and 400 parents in underserved urban, suburban and rural communities nationwide.
DATE: -
TEAM MEMBERS: Rita Karl
resource project Public Programs
The NIH Science Education Partnership Award (SEPA) program of Emory University endeavors to use an over-arching theme of citizen science principles to:


develop an innovative curriculum based on citizen science and experiential learning to evaluate the efficacy of informal science education in after-school settings;
promote biomedical scientific careers in under-represented groups targeting females for Girls for Science summer research experiences;
train teachers in Title I schools to implement this citizen science based curriculum; and
disseminate the citizen science principles through outreach.


This novel, experiential science and engineering program, termed Experiential Citizen Science Training for the Next Generation (ExCiTNG), encompasses community-identified topics reflecting NIH research priorities. The curriculum is mapped to Next Generation Science Standards.

A comprehensive evaluation plan accompanies each program component, composed of short- and/or longer-term outcome measures. We will use our existing outreach program (Students for Science) along with scientific community partnerships (Atlanta Science Festival) to implement key aspects of the program throughout the state of Georgia. These efforts will be overseen by a central Steering Committee composed of leadership of the Community Education Research Program of the Emory/Morehouse/Georgia Institute of Technology Atlanta Clinical Translational Science Institute (NIH CTSA), the Principal Investigators, representatives of each program component, and an independent K–12 STEM evaluator from the Georgia Department of Education.

The Community Advisory Board, including educators, parents, and community members, will help guide the program’s implementation and monitor progress. A committee of NIH-funded investigators, representing multiple NIH institutes along with experienced science writers, will lead the effort for dissemination and assure that on-going and new NIH research priorities are integrated into the program’s curriculum over time.
DATE: -
TEAM MEMBERS: Adam Marcus Theresa Gillespie