Skip to main content

Community Repository Search Results

resource project Informal/Formal Connections
This Innovations in Development project explores radical healing as an approach to create after-school STEM programming that welcomes, values and supports African American youth to form positive STEM identities. Radical healing is a strength-based, asset centered approach that incorporates culture, identity, civic action, and collective healing to build the capacity of young people to apply academic knowledge for the good of their communities. The project uses a newly developed graphic novel as a model of what it looks like to engage in the radical healing process and use STEM technology for social justice. This graphic novel, When Spiderwebs Unite, tells the true story of an African American community who used STEM technology to advocate for clean air and water for their community. Youth are supported to consider their own experiences and emotions in their sociopolitical contexts, realize they are not alone, and collaborate with their community members to take critical action towards social change through STEM. The STEM Club activities include mentoring by African American undergraduate students, story writing, conducting justice-oriented environmental sciences investigations, and applying the results of their investigations to propose and implement community action plans. These activities aim to build youth’s capacity to resist oppression and leverage the power of STEM technology for their benefit and that of their communities.

Clemson University, in partnership with the Urban League of the Upstate, engages 100 predominantly African American middle school students and 32 African American undergraduate students in healing justice work, across two youth-serving, community-based organizations at three sites. These young people assume a leadership role in developing this project’s graphic novel and curriculum for a yearlong, after-school STEM Club, both constructed upon the essential components of radical healing. This project uses a qual→quant parallel research design to investigate how the development and use of a graphic novel could be used as a healing justice tool, and how various components of radical healing (critical consciousness, cultural authenticity, self knowledge, radical hope, emotional and social support, and strength and resilience) affect African American youths’ STEM identity development. Researchers scrutinize interviews, field observations, and project documents to address their investigation and utilize statistical analyses of survey data to inform and triangulate the qualitative data findings. Thus, qualitative and quantitative data are used to challenge dominant narratives regarding African American youth’s STEM achievements and trajectories. The project advances discovery and understanding of radical healing as an approach to explicitly value African Americans’ cultures, identities, histories, and voices within informal STEM programming.
DATE: -
TEAM MEMBERS: Renee Lyons Rhondda Thomas Corliss Outley
resource project Informal/Formal Connections
This project is expanding an effective mobile making program to achieve sustainable, widespread impact among underserved youth. Making is a design-based, participant-driven endeavor that is based on a learning by doing pedagogy. For nearly a decade, California State University San Marcos has operated out-of-school making programs for bringing both equipment and university student facilitators to the sites in under-served communities. In collaboration with four other CSU campuses, this project will expand along four dimensions: (a) adding community sites in addition to school sites (b) adding rural contexts in addition to urban/suburban, (c) adding hybrid and online options in addition to in-person), and (d) including future teachers as facilitators in addition to STEM undergraduates. The program uses design thinking as a framework to engage participants in addressing real-world problems that are personally and socially meaningful. Participants will use low- and high-tech tools, such as circuity, coding, and robotics to engage in activities that respond to design challenges. A diverse group of university students will lead weekly, 90-minute activities and serve as near-peer mentors, providing a connection to the university for the youth participants, many of whom will be first-generation college students. The project will significantly expand the Mobile Making program from 12 sites in North San Diego County to 48 sites across California, with nearly 2,000 university facilitators providing 12 hours of programming each year to over 10,000 underserved youth (grades 4th through 8th) during the five-year timeline.

The project research will examine whether the additional sites and program variations result in positive youth and university student outcomes. For youth in grades 4 through 8, the project will evaluate impacts including sustained interest in making and STEM, increased self-efficacy in making and STEM, and a greater sense that making and STEM are relevant to their lives. For university student facilitators, the project will investigate impacts including broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. Multiple sources of data will be used to research the expanded Mobile Making program's impact on youth and undergraduate participants, compare implementation sites, and understand the program's efficacy when across different communities with diverse learner populations. A mixed methods approach that leverages extant data (attendance numbers, student artifacts), surveys, focus groups, making session feedback forms, observations, and field notes will together be used to assess youth and university student participant outcomes. The project will disaggregate data based on gender, race/ethnicity, grade level, and site to understand the Mobile Making program's impact on youth participants at multiple levels across contexts. The project will further compare findings from different types of implementation sites (e.g., school vs. library), learner groups, (e.g., middle vs. upper elementary students), and facilitator groups (e.g., STEM majors vs. future teachers). This will enable the project to conduct cross-case comparisons between CSU campuses. Project research will also compare findings from urban and rural school sites as well as based on the modality of teaching and learning (e.g., in-person vs. online). The mobile making program activities, project research, and a toolkit for implementing a Mobile maker program will be widely disseminated to researchers, educators, and out-of-school programs.
DATE: -
TEAM MEMBERS: Edward Price Frank Gomez James Marshall Sinem Siyahhan James Kisiel Heather Macias Jessica Jensen Jasmine Nation Alexandria Hansen Myunghwan Shin
resource project Informal/Formal Connections
This Innovations in Development project aims to foster the development of STEM identity among a diverse group of middle school students and, in turn, motivate them to pursue in STEM interests and careers. Vegas STEM Lab, led by a team of investigators from the University of Nevada, Las Vegas, will employ a mix of online and on-site activities to introduce students to engineering methods in the context of the entertainment and hospitality (E&H) industry that is the lifeblood of Las Vegas. Investigators will collaborate with local resorts, multimedia designers, and arts institutions to offer field experiences for students to interview, interact with, and learn from local experts. The Lab will help youth overcome prevailing beliefs of STEM as boring and difficult, boost their confidence as STEM-capable individuals, and expose them to the exciting STEM careers available in their hometown. UNLV engineering undergrads will serve as near-peer mentors to the middle school students, guiding them through Lab activities and acting as role models. Investigators will measure student learning and engagement over the course of the Vegas STEM Lab experience with the aim of understanding how the Lab model—with its rich set of activities and interpersonal interactions set in the local E&H industry—can cultivate STEM identity development and encourage students to pursue STEM pathways. Despite the project’s hyperlocal focus on the Las Vegas community, if successful, other cities and towns may learn from and adapt the Lab model for use in their youth development programs.

Vegas STEM Lab will provide online materials for students’ STEM learning during the academic year followed by on-site visits and hands-on project development during a three-week summer experience. The Lab will run for three years with cohorts of 40 students each (N=120) with the aim of iteratively improving its activities and outcomes from year to year. The local school district will help recruit middle school students who have demonstrated low interest in STEM to participate in the Lab, ensuring that participants reflect the demographic makeup of the Las Vegas community in terms of race and ethnicity, socio-economic status, and gender. Summer activities will take students behind the scenes of the city’s major E&H venues; investigate the workings of large-scale displays, light shows, and “smart hospitality” systems; and then build their own smaller scale engineering projects. Investigators will employ the Dynamic Systems Model of Role Identity (DSMRI) framework to study how intentionally designed Lab experiences shape students’ understanding of themselves, their future aspirations, and their grasp of the scientific enterprise. Summer activities will be integrated into the online learning platform at the end of each year of Vegas STEM Lab, and in the final year of the project, workshops will train local educators to use the platform in either formal or informal learning settings. Materials and research findings produced through this work will be disseminated to middle school teachers and afterschool care providers, and shared with researchers through academic publications and conferences.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Emma Regentova Venkatesan Muthukumar Jonathan Hilpert Si Jung Kim
resource project Exhibitions
Informal STEM learning environments, programs, and policies can be designed to support and promote neurodiversity through inclusive practices. This project will explore the benefits of informal STEM learning for K-12 neurodiverse learners through a systematic review and meta-analysis of extant literature and research grounded in the theory of social model of ability. This framework is an asset-based approach and aims to promote social, cognitive, and physical inclusion, leading to positive outcomes. Using various quantitative and qualitative methodologies, this project endeavors to collect and synthesize the evidence for supporting and enhancing accessibility and inclusiveness in informal STEM learning for K-12 neurodiverse learners. It will explore key features of informal STEM learning and effective, evidence-based strategies to effectively engage children and youth with neurological conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), dyslexia, and dyspraxia, in informal STEM learning environments. The findings of this complex synthesis will provide a timely contribution to deeper understanding of supports for neurodiversity while also highlighting areas that inform further research, shifts in practice, and policy.

The systematic review will occur over a two-year period. It will focus on identifying program elements that promote inclusion of children and youth with neurodevelopmental disabilities in informal STEM learning contexts. Specifically, the review will explore two overarching research questions and several sub-research questions:


RQ1. What program elements (teaching and learning variables) in informal STEM learning settings facilitate inclusion of K-12 neurodiverse STEM learners? Sub-RQ1a: What are the overlapping and discrete characteristics of the program elements that facilitate social, cognitive, and physical inclusion?

Sub-RQ1b: In what ways do the program elements that facilitate inclusion vary by informal STEM learning setting?


RQ2: What program elements (teaching and learning variables) in informal STEM learning settings are correlated with benefits for K-12 neurodiverse STEM learners? Sub-RQ2a: What are the overlapping and discrete characteristics of the program elements that correlate with increased STEM identity, self- efficacy, interest in STEM, or STEM learning?

Sub-RQ2b: In what ways do the program elements that correlate with positive results for students vary by informal STEM learning setting? The research synthesis will consider several different types of studies, including research and evaluation; experimental and quasi-experimental designs; quantitative, qualitative, and mixed methods; and implementation studies.




The research team will (a) review all analyses and organize findings to illustrate patterns, factors, and relationships, (b) identify key distinctions and nuances derived from the contexts represented in the literature, and (c) revisit and confirm the strength of evidence for making overall assertions of what works, why, and with whom. The findings will be disseminated in practice briefs, journal articles, the AISL resource center, as well as presentations and materials for researchers, practitioners, and informal STEM leaders. Ultimately, this work will result in a comprehensive synthesis of effective informal STEM learning practices for neurodiverse K-12 learners and identify opportunities for further research and development.

This literature review and meta-analysis project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Ronda Jenson Kelly Roberts
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The three-year project, Montana Models: Connecting Local and Disciplinary Practices through University-Community Partnerships, focuses on creating, implementing, and studying several learning outcomes associated with youth engagement in mathematical modeling contexts. The project builds on existing partnerships between the state's two research universities and Montana 4-H to target outreach to rural youth and bring them into a network of people who can inspire, support, and sustain STEM learning. Middle school and high school students from rural communities will be invited to a university campus for a residential modeling-based summer program l focused on mathematics and mathematical modeling. Activities at the summer program are designed to engage them in problems relevant to their own backgrounds and experiences and to honor their local funds of knowledge. The primary goal of Montana Models is to use mathematical modeling as a mechanism for bringing everyday mathematical practices already present in rural communities into contact with disciplinary practices. The project focuses on the following research questions: (1) What are the everyday mathematical practices in Montana communities? (2) How can everyday mathematical practices be leveraged and brought into contact with disciplinary practices in service of mathematizing meaningful questions within the community? (3) How do youth identify and get identified with respect to mathematics and with respect to their role in the world? (4) How does participation in project activities affect participants' knowledge of mathematical practices and content? The project uses social design experimentation, a hybrid research methodology which combines the traditions of design-based research with forms of inquiry that involve collaboration among participants, researchers, and other stakeholders, such as critical ethnography. Data sources include field notes from ethnographic observations, interviews, videos of students engaging in modeling activities, artifacts that show their mathematical work, and results from the Attitudes Towards Mathematics Inventory. Through its collaboration with 4-H, Montana Models targets outreach to rural youth across the state, especially those from groups that are typically underrepresented in STEM fields. The project is poised to impact ways in which formal and informal educators understand the knowledge bases that are already present in rural communities and how those bases may inform, support, and sustain STEM learning. Findings and deliverables will be disseminated through a public-facing website and through the 4-H infrastructure. This infrastructure includes Montana 4-H's Clover Communication Contest that will allow participating youth to showcase their projects. Research findings will be shared through local and national conferences and peer-reviewed publications. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mary Carlson Elizabeth Burroughs Frederick Peck Katharine Banner david thomas
resource project Public Programs
The Institute for the Study of Knowledge Management in Education (ISKME) will partner with the New Hampshire Department of Education, the American Library Association (ALA), the American Association of School Librarians (AASL), and others to engage in-service and pre-service school librarians and teachers in multiple settings in the use of curated open educational resources (OER) for Science, technology, engineering, and math (STEM) teaching and learning. The project will include annual spring professional learning academies; semi-annual professional development symposia; and virtual support. Project outcomes include the development of new teaching and social learning practices; the creation and sharing of high quality standards-aligned instructional units and text sets focused on STEM inquiry; higher education courseware modules; and a replicable and scalable community of practice and professional learning network.
DATE: -
TEAM MEMBERS: Lisa Petrides