Skip to main content

Community Repository Search Results

resource project
iPlan: A Flexible Platform for Exploring Complex Land-Use Issues in Local Contexts
DATE: -
TEAM MEMBERS:
resource project Public Programs
The Fairchild Tropical Botanic Garden will leverage its partnership with NASA Kennedy Space Center to design, equip, and operate an inclusive and interactive scientific research workspace. The new makerspace will provide visitors of all ages an opportunity to contribute to identifying solutions to food production issues. Preparation of the Growing Beyond Earth Innovation Studio will involve equipping the space with state-of-the-art tools and materials for designing and monitoring growing experiments, installing plant growing equipment, and furnishing the space to maximize experimentation, collaboration, and learning. The garden will invite K-12 students, families and casual visitors to collaborate on plant science experiments, allowing them to address questions relevant to current NASA research on food production aboard spacecraft, and within habitats on the surface of Mars.
DATE: -
TEAM MEMBERS: Amy Padolf
resource project Public Programs
The Monterey Bay Aquarium will use an iterative program development process to strengthen and expand its teen programming to inspire youth to conserve the ocean and its vast resources. The Teen Pathways: Inspiring Future Ocean Stewards project will increase the number of teens the aquarium engages in ocean science, environmental research, service learning, and conservation action. The project will create opportunities for middle and high school teens to strengthen their knowledge, skills, and commitment to conservation that will continue into and beyond college. The project team will complete an ongoing development process by implementing new project-based science and conservation programs for 7th-9th grade students that provide a pathway to the aquarium's high school programs. The team will also revamp its existing leadership program for high school students and refine its other teen offerings. The programs will align with Next Generation Science Standards and the Ocean Literacy Framework.
DATE: -
TEAM MEMBERS: Rita Bell
resource project Public Programs
The Massachusetts Audubon Society will develop, pilot, and implement an evaluation framework for nature-based STEM programming that serves K-12 students visiting its network of nature centers and museums. Working with an external consultant, the society will develop the framework comprised of a logic model and theory of change for fieldtrips, and develop a toolkit of evaluation data collection methodology suitable to various child development stages. The project team will design and conduct three professional development training seminars to help Massachusetts Audubon school educators develop a working understanding of the new evaluation framework for school programs and gain the skills necessary to support protocol implementation. This project will result in the development and adoption of a universal protocol to guide the collection, management, and reporting of education program evaluation data across the 19 nature centers and museums in the Massachusetts Audubon system.
DATE: -
TEAM MEMBERS: Kris Scopinich
resource project Public Programs
In response to a community-identified need to prevent conflicts between humans and carnivores, the Woodland Park Zoo will develop new strategies to facilitate community-driven learning and problem-solving. The zoo will establish a community-based science education and conservation model in partnership with the city and school district of Issaquah. The project will include a middle school inquiry-based science program for 6th grade students that will begin with teacher orientations, followed by introducing program elements to students, and culminating in a community event at each school featuring student presentations. A three-phase community engagement program will begin with a resident survey on carnivores in the community and an open house launch event. A series of community events and formation of learning teams for further dialogue and for problem solving will result in the implementation of strategies developed by the teams. The framework produced by the project will be applicable to other communities attempting to balance urban expansion with wildlife conservation.
DATE: -
TEAM MEMBERS: Katie Remine
resource project Professional Development, Conferences, and Networks
This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.

The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.

This award is being co-funded with the Office International and Integrative Activities.
DATE: -
TEAM MEMBERS: Bruce MacFadden
resource evaluation Exhibitions
Under the Arctic: Digging into Permafrost, a 2,000 square foot museum exhibition, engaged visitors in real and simulated experiences related to the nature of permafrost, permafrost research, and the impact of climate change on permafrost. Development of the exhibition was part of a larger National Science Foundation Advancing Informal STEM Learning grant, Hot Times in Cold Places: The Hidden World of Permafrost, awarded to the University of Alaska Fairbanks in partnership with the Oregon Museum of Science and Industry. Two related evaluation studies led us to our conclusions. First, we
DATE:
TEAM MEMBERS: Victoria Coats Matthew Sturm Angela Larson Kelly Kealy Laura Conner
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource evaluation Media and Technology
This report summarizes evaluative findings from Computational Thinking in Ecosystems project, and the resulting product, i.e., a functional draft of a game called “The Pack.” Evaluative efforts included gathering feedback from key stakeholders—including members of the design based research (DBR) team members at the New York Hall of Science (NYSCI) along with advisors and project partners— about the game and the DBR process, as well as an independent assessment of the game via feedback from educators and a round of play-testing with youth.
DATE:
TEAM MEMBERS: Jennifer Borland
resource project Media and Technology
This project develops and examines place-based learning using mobile augmented reality experiences for rural families where museums and science centers are scarce yet where natural resources are rich with outdoor trails, parks, and forestlands. The collaborative research team, with members from rural libraries, outdoor learning centers, learning scientists at Penn State University, and rural communities in Pennsylvania, will develop augmented reality and mobile learning resources for families and children aged from 4 to 12. The goal is to help people see what is not visible in real-time in order to learn about life and earth sciences based on local watersheds, trees, and seasonal cycles that are familiar and relevant to rural communities. To accomplish this goal, the project team will create scientifically meaningful experiences for rural families and children in their out-of-school time through three iterations of research and design. Although there is evidence that augmented reality can support learning, little empirical research has been conducted to determine what makes one type of augmented learning experience more effective than others in outdoor learning spaces. This project will produce research findings on the utility of augmented reality for science learning with families and youths outdoors. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants

Through a four-year design-based research study, researchers will investigate three research questions. (1) How can outdoor learning experiences be enhanced with augmented reality and digital resources in ways that make science more visible and interesting?; (2) How do different forms of augmentations on trails and in gardens support science learning? 3) What social roles do children and parents play in supporting each other's science learning and connections to rural communities? Data collection includes video-recordings of children and families in the outdoors, learning analytics of people's behavior, and interviews with rural families. The project's research design will allow for the development of theory, which supports rural families learning science within and about their communities. At the end of the project, the team will offer generalizable design principles for technologically-enhanced informal learning for outdoor displays, gardens, and trails.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Heather Toomey Zimmerman Susan Land
resource evaluation Public Programs
During the school year of 2017-2018, Fairchild Tropical Botanic Garden (Fairchild) implemented the second year of a four-year project entitled: Growing Beyond Earth (GBE). NASA is providing funding support for project implementation as well as an external project evaluation. The evaluation activities conducted this year were focused on understanding project implementation and assessing project outcomes using data collected between September 2017 and May 2018. This report’s findings and accompanying recommendations inform next year’s project implementation and evaluation activities.
DATE:
TEAM MEMBERS: Catherine Raymond Marion Litzinger Carl Lewis Amy Padolf
resource project Exhibitions
The Antarctic Dinosaurs project aims to leverage the popularity and charisma of dinosaurs to inspire a new generation of polar scientists and a more STEM (Science, Technology, Engineering, Mathematics)-literate citizenry. The project, centered on a giant screen film that will reach millions of theatrical viewers across the U.S., will convey polar science knowledge through appealing, entertaining media experiences and informal learning programs. Taking advantage of the scope of research currently taking place in Antarctica, this project will incorporate new perspectives into a story featuring dinosaurs and journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and the profound changes the Antarctic continent has endured. The goals of the project are to encourage young people to learn about Antarctica and its connection to the rest of the globe; to challenge stereotypes of what it means to participate in science; to build interest in STEM pursuits; and to enhance STEM identity.

This initiative, aimed particularly at middle school age youth (ages 11-14), will develop a giant screen film in 2D and 3D formats; a 3-episode television series; an "educational toolkit" of flexible, multi-media resources and experiences for informal use; a "Field Camp" Antarctic science intervention for middle school students (including girls and minorities); fictional content and presentations by author G. Neri dealing with Antarctic science produced for young people of color (including non-readers and at-risk youth who typically lack access to science and nature); and presentations by scientists featured in the film. The film will be produced as a companion experience for the synonymous Antarctic Dinosaurs museum exhibition (developed by the Field Museum, Chicago, in partnership with the Natural History Museum of Los Angeles County, Discovery Place, Charlotte, NC, and the Natural History Museum of Utah). Project partner The Franklin Institute will undertake a knowledge-building study to examine the learning outcomes resulting from exposure to the film with and without additional experiences provided by the Antarctic Dinosaurs exhibition and film-related educational outreach. The study will assess the strategies employed by practitioners to make connections between film and other exhibits, programs, and resources to improve understanding of the ways film content may complement and inspire learning within the framework of the science center ecosystem. The project's summative evaluation will address the process of collaboration and the learning impacts of the film and outreach, and provide best practices and new models for content producers and STEM educators. Project partners include film producers Giant Screen Films and Dave Clark Inc.; television producer Natural History New Zealand (NHNZ); Discovery Place (Charlotte, NC); The Franklin Institute; The Field Museum; The Natural History Museum of Utah (The University of Utah); author G. Neri; and a team of scientists and diversity advisers. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Antarctic section of the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood