Skip to main content

Community Repository Search Results

resource project Exhibitions
The Maryland Science Center (MSC), in collaboration with Johns Hopkins University (JHU), the University of Maryland, Baltimore (UMB), and Morgan State University (MSU), has sought the support of the National Institutes of Health SEPA (Science Education Partnership Award) Program to develop "Cellular Universe: The Promise of Stem Cells," a unique exhibition and update center with related programs that highlight the most current science in cell biology and stem cell research. Visitor surveys have shown that science museum visitors are very interested in learning about stem cell research, but know little about the science of stem cells or cell biology, which form the basis of stem cell research. The goal of this project is to help visitors learn about advances in cell biology and stem cells so that they will make informed health-related decisions, explore new career options, and better understand the role of basic and clinical research in health advances that affect people's lives. Topics to be covered include the basic biology of cells, the role of stem cells in human development, current stem cell research and the clinical research process. This exhibition will also address the controversies in stem cell research. Our varied advisory panel, including cell biologists, physiologists, adult and embryonic stem cell researchers and bioethicists, will ensure the objectivity of all content. "Cellular Universe: The Promise of Stem Cells" will be a 3,500 square-foot exhibition to be planned, designed and prototyped in Fall 2006-Winter 2009, and installed in MSC's second-floor human body exhibition hall in Spring 2009. This exhibition will build on the successful model of "BodyLink," our innovative health science update center funded by a 2000 SEPA grant (R25RR015602) and supported by partnerships with JHU and UMB.
DATE: -
TEAM MEMBERS: Roberta Cooks
resource project Media and Technology
ITR: A Networked, Media-Rich Programming Environment to Enhance Informal Learning and Technological Fluency at Community Technology Centers The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-rich programming environment, designed specifically to enhance the development of technological fluency at after-school centers in economically disadvantaged communities. This new programming environment (to be called Scratch) will be grounded in the practices and social dynamics of Computer Clubhouses, a network of after-school centers where youth (ages 10-18) from low-income communities learn to express themselves with new technologies. We will study how Clubhouse youth (ages 10-18) learn to use Scratch to design and program new types of digital-arts projects, such as sensor-controlled music compositions, special-effects videos created with programmable image-processing filters, robotic puppets with embedded controllers, and animated characters that youth trade wirelessly via handheld devices. Scratch's networking infrastructure, coupled with its multilingual capabilities, will enable youth to share their digital-arts creations with other youth across geographic, language, and cultural boundaries. This research will advance understanding of the effective and innovative design of new technologies to enhance learning in after-school centers and other informal-education settings, and it will broaden opportunities for youth from under-represented groups to become designers and inventors with new technologies. We will iteratively develop our technologies based on ongoing interaction with youth and staff at Computer Clubhouses. The use of Scratch at Computer Clubhouses will serve as a model for other after-school centers in economically-disadvantaged communities, demonstrating how informal-learning settings can support the development of technological fluency, enabling young people to design and program projects that are meaningful to themselves and their communities.
DATE: -
TEAM MEMBERS: Mitchel Resnick John Maeda Yasmin Kafai
resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Informal/Formal Connections
The "Salmon Research Team: A Native American Technology, Research and Science Career Exposure Program" is a three-year, youth-based ITEST project submitted by the Oregon Museum of Science and Industry. The project seeks to provide advanced information technology and natural science career exposure and training to 180 middle level and high school students. Mostly first-generation college-bound students, the target audience represents the Native American community and those with Native American affiliations in reservation, rural and urban areas. Students will investigate computer modeling of complex ecological, hydrological and geological problems associated with salmon recovery efforts. Field experiences will be provided in three states: Oregon, Washington and northern California. The participation of elders and tribal researchers will serve as a bridge between advanced scientific technology and traditional ecological knowledge to explore sustainable land management strategies. Students will work closely with Native American and other scientists and resource managers throughout the Northwest who use advanced technologies in salmon recovery efforts. Student participation in IT-dependent science enrichment and research activities involving natural science fields of investigation will occur year round. Middle school students are expected to receive at least 330 contact hours including a one-week summer research experience, a one-week spring break program, and seven weekends of residential programs during the school year. The high school component consists of 460 contact hours reflecting one additional week for the summer research experience. In addition to watershed and salmon recovery related research, students will be involved in other ancillary research projects. A vast array of partners are positioned to support the field research experience including, for example, the U.S. Department of the Interior, Redwood National State Park, College of Natural Resources and Sciences at Humboldt State University, Confederated Tribes of the Warm Springs, University of Oregon Institute of Marine Biology, University of Washington Columbia Basin Research project, the Northwest Center for Sustainable Resources at Chemeketa Community College and the Integrated Natural Resource Technology program at Mt. Hood Community College. The project is intended to serve as a model for IT-based youth science programs that address national and state education standards and are relevant to the cultural experience of Native American students. Two mentors will provide continued support to students: an academic mentor at the student's schools and a professional mentor from a local university or natural resource agency. Incentives will be provided for student participation including stipends and internships. Career exposure and work-related skills are integrated throughout the project activities and every program component. Creative strategies are used to encourage family involvement including, for example, salmon bakes and museum discounts.
DATE: -
TEAM MEMBERS: Travis Southworth-Neumeyer Daniel Calvert
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource project Public Programs
The importance of reporting current science to the general public is more important now than ever before. The best way to ensure enthusiastic support for science is to engage the general public as directly as possible. Unlike schooling, learning in a museum is self-motivated, self-directed, and can be lifelong. The partnership between Columbia University's MRSEC (Materials Research Science and Engineering Center) and the New York Hall of Science will do this in an exciting manner by development of innovative 'rolling exhibits' (Discovery Carts) that are visually attractive, intellectually stimulating and demonstrate current research. This project will unite a dynamic University research faculty, dedicated graduate students, and high school teachers from one of the largest and best known teacher research experience programs in the country. NY Hall of Science, specialists in public science education, have developed exhibitions, over the past 20 years, for school and family group visitors in biology, chemistry and physics. Most recently, the Hall opened an 800-foot biochemistry discovery lab featuring ten experiments that teach visitors about the role of molecules in everyday life. The lab is facilitated by an explainer, and hundreds of families use the lab throughout the year. All exhibits and programs have rigorous science presented in an engaging manner in an educationally non-threatening environment. Columbia University is one of the premier research institutions in the country. Columbia's MRSEC is engaged in multi-faceted educational outreach activities in the New York metropolitan area, including a close working relationship with Columbia's 16 year old RET program. Together these institutions are well situated to involve the research community in public education activities that will inform the public about the current advances in science. Teachers and graduate students who have worked in MRSEC labs will assist in bringing new skills and ideas to the development of museum programming and exhibits. The teachers have experienced both the research projects first-hand and have had the experience in translating the research into meaningful classroom activities for their students. The graduate students have worked alongside the teachers, assisting them in making the research meaningful to high school students. Broader Impact: Highly skilled educators who can improve a young person's chances for success are like gold for the nation's schools, which are under pressure for tough accountability standards. Teachers will influence over a thousand students during the course of their careers. The Hall's Explainers are of high school and college age. These two groups will have positive impacts on our society for years to come. They will benefit from participation, and the tens of thousands of visitors to the museum will learn about cutting edge research.
DATE: -
TEAM MEMBERS: Irving Herman martin weiss
resource project Public Programs
The California Academy of Sciences will develop, evaluate and disseminate exhibits and programs designed to communicate to public audiences the results of research including a biotic inventory of the amphibians and reptiles of Myanmar. Using innovative trading cards for kids, updates to current research exhibits, a poster highlighting research, a pocket guide to venomous snakes of Myanmar and a posting of research -related materials on the CAS website, the project will inform the public about biotic inventory research and conservation in Myanmar. Designed specifically for target audiences of children and adults, the exhibits and programs will serve several hundred thousand CAS visitors annually.
DATE: -
TEAM MEMBERS: Alan Leviton Margaret Burke
resource project Professional Development, Conferences, and Networks
The Nanoscale Science and Engineering Education (NSEE) Center for Learning and Teaching (NCLT) would focus on the research and development of nano-science instructional resources for grades 7-16, related professional development opportunities for 7-12 teachers, and programs infused with nano-science content for education doctoral students. The Center would bring together educators and scientists from several areas of nano-science and engineering research to collaborate with science teachers and doctoral candidates in education on both the development of the resources and research on their efficacy. The PI has prior experience as director of the Materials World Modules project, an NSF-funded curriculum currently in use in several secondary schools across the country. Lead partners in the proposed Center are Northwestern University, Purdue University, University of Michigan, University of Illinois at Chicago and University of Illinois at Urbana-Champaign. Additional partners include Argonne National Laboratory, West Point Military Academy, Alabama A & M University, Fisk University, Hampton University, Morehouse College and University of Texas at El Paso. The additional partners will widen the geographic range of the project, expanding opportunities to reach a diverse and currently underrepresented population of graduate students, teachers and ultimately students. STEM and Education faculty and researchers from the partner institutions would participate in interdisciplinary teams to address the Center's mission: Provide national education leadership and resources for advancing NSEE Create and implement professional development programs in NSEE Use innovative ideas in learning to design instructional materials for grades 7-16 Conduct research relating to integration of NSEE into science, technology, engineering and mathematics (STEM) education.
DATE: -
TEAM MEMBERS: R. P. H. Chang Thomas Mason Ncholas Giordano Joseph Krajcik
resource project Public Programs
Explore Evolution is a three-year project that uses a combination of traveling exhibits and activity kits to introduce the concept of evolution to museum audiences and 4-H groups. Six museum partners will collaborate on the development of eleven interactive exhibit modules on the following topics: disease in humans, eye development in animals, fruit fly diversity, sexual selection, hominoid development and extinction. The museum consortium includes the Kansas Museum and Biodiversity Center, Museum of the Rockies (MT), Sam Noble Oklahoma Museum of Natural History, Science Museum of Minnesota, University of Nebraska State Museum and the Exhibits Museum of the University of Michigan. The inquiry-based activity kits will be modeled after the University of Nebraska-Lincoln's "Wonderwise" kits, funded in part by NSF, and designed for middle school audiences. An "Explore Evolution" website will be launched to support the exhibits and activity kits. Dissemination will occur through museum education programs as well as a consortium of 4-H programs in Iowa, Minnesota, Montana, Michigan, Nebraska and Wyoming. It is anticipated that more than 1.8 million museum visitors and 800,000 4-H members will participate in this project.
DATE: -
TEAM MEMBERS: Judy Diamond
resource project Public Programs
Community Ambassadors in Science Exploration (CASE) is a new model for encouraging the appreciation and understanding of science among underserved families through: a corps of teen and adult peer presenters; a curriculum of hands-on learning experiences for families of diverse ages and backgrounds; a regional network of museum-community collaboration; integration of community and museum resources through joint programming; and a longitudinal research study of program impacts. CASE will serve over 20,000 people over three years with peer-presented family learning opportunities and museum experiences. In addition, CASE will train a total of 108 science ambassadors who will offer science workshops at community-based organizations in the languages spoken by their constituencies. Through CASE, the ambassadors will gain training and experience in informal science education that can open the door to possible future career opportunities in community and museum settings. Building on a ten-year history of museum-community collaboration, CASE will be conducted by PISEC, the Philadelphia/Camden Informal Science Education Collaborative. PISEC includes four major Philadelphia informal science institutions: The Franklin Institute, the Philadelphia Zoo, The Academy of Natural Sciences and The New Jersey State Aquarium. This organization conducts research and outreach projects in support of family science learning.
DATE: -
TEAM MEMBERS: Minda Borun Kathleen Wagner Angela Wengner Naomi Echental
resource project Public Programs
EDC and the Lawrence Hall of Science propose an intensive, innovative mentoring and professional development model that will build the capacity of community-based organizations (CBOs) to deliver high-quality science and engineering curricula to children in after-school programs. The program's goal is to alleviate two consistent problems of after-school STEM providers: high turnover rate and the ability to lead/teach high quality science activities. The project will put in place a broad network of trainers in three regions of the country, leveraging the expertise and collaboration of two well-established and trusted national informal education networks. The extensive collaboration involves 14 organizations total including nine science centers (of varying sizes), three state 4-H agencies, the National 4-H Council and EDC. The primary audience for this project is the trainers (science center, 4-H, others) who currently (or may in the future) train CBO staff. EDC, LHS, and three "mentor" science centers will supervise these trainings and develop the new PD resources designed to improve the quality of training that CBO staff receive from these and other trainers. The National 4-H Council will help coordinate training and dissemination of products through the 4-H national network Goodman Research Group will conduct formative and summative evaluations of the project. DELIVERABLES: This project will deliver: 1) a model of prolonged training and support to build the capacity of CBOs to lead high quality science and engineering curricula with children; 2) a mentoring model to support and supervise trainers who work directly with CBOs; and 3) professional development tools and resources designed to improve the quality of training delivered to CBO staff. STRATEGIC IMPACT: This project will impact the national after-school professional development field by (a) demonstrating a model for how science-center, 4-H, and other trainers can build the capacity of CBOs to improve the way they lead science and engineering projects with children, (b) nurturing a cadre of mentor institutions to assist others to adopt this capacity-building and professional-development model, and (c) developing professional development tools and resources that improve the quality of training delivered by trainers to CBO staff. COLLABORATIVE PARTNERS: The three "mentor" institutions are: (1) the Lawrence Hall of Science, (2) the Science Museum of Minnesota, and (3) the Boston Children's Museum. The six science centers include (1) COSI Toledo in Toledo, OH; (2) Headwaters Science Center in Bemidji, MN; (3) Providence Children's Museum in Providence, RI; (4) Rochester Museum and Science Center in Rochester, NY; (5) River Legacy Living Science Center in Arlington, TX; and (6) Explora in Albuquerque, NM. The three 4-H partners include (1) 4-H New Hampshire, (2) 4- H Minnesota, and (3) 4-H California.
DATE: -
TEAM MEMBERS: Charles Hutchison Bernard Zubrowski Charles Hutchison