Skip to main content

Community Repository Search Results

resource project Media and Technology
In every drop of water, down at the scale of atoms and molecules, there is a world that can fascinate anyone - ranging from a non-verbal young science student to an ardent science-phobe. The objective of Learning Science Through Guided Discovery: Liquid Water & Molecular Networks is to use advanced technology to provide a window into this submicroscopic world, and thereby allow students to discover by themselves a new world. We are developing a coordinated two-fold approach in which a cycle of hands-on activities, games, and experimentation is followed by a cycle of computer simulations employing the full power of computer animation to "ZOOM" into the depths of his or her newly- discovered world, an interactive experience surpassing that of an OMNIMAX theater. Pairing laboratory experiments with corresponding simulations challenges students to understand multiple representations of concepts. Answers to student questions, resolution of student misconceptions, and eventual personalized student discoveries are all guided by a clear set of "cues" which we build into the computer display. Moreover, the ability to visualize "real-time" dynamic motions allows for student-controlled animated graphic simulations on the molecular scale and interactive guided lessons superior to those afforded by even the most artful of existing texts. While our general approach could be applied to a variety of topics, we have chosen to focus first on water; later we will test the generality of the approach by exploring macromolecules such as proteins and DNA. The simulation sofware we have been developing embodies a simple molecular interaction model but requires leading edge computing in order to (1) apply the model to large enough systems to yield simple and realistic behavior, and (2) animate the result in real time with advanced graphics. Our ultimate goal in this project is not only to help students learn science, but also to help them learn to think like research scientists. By looking at scientific knowledge as a set of useful models - models that are essentially temporary and will inevitably lead to better ones - they can see that science is not a set of facts, but a method for discovering patterns and predictability in an otherwise disordered and unpredictable world. Through mastery of the simulation software, students will gain the self-confidence to embark on their own missions of discovery.
DATE: -
TEAM MEMBERS: H. Eugene Stanley
resource project Media and Technology
Digital image processing offers several possible new approaches to the teaching of a variety of mathematical concepts at the middle-school and high-school levels. There is reason to believe that this approach will be successful in reaching some "at-risk" students that other approaches miss. Since digital images can be made to reflect almost any aspect of the real world, some students may have an easier time taking an interest in them than they might with artificial figures or images resulting from other graphics- oriented approaches. Using computer-based tools such as image processing operators, curve-fitting operators, shape analysis operators, and graphical synthesis, students may explore a world of mathematical concepts starting from the psychologically "safe" territory of their own physical and cultural environments. There is reason to hope that this approach will be particularly successful with students from diverse backgrounds, girls and members of minority groups, because the imagery used in experiments can easily be tailored to individual tastes. The work of the project consists of creating detailed designs of the learning modules, implementing them on microcomputers, and evaluating their effectiveness in a variety of ways, using trials with students at Rainier Beach High School, which is an urban public high school having an ethnically diverse student body and a Macintosh computer laboratory.
DATE: -
TEAM MEMBERS: Steven Tanimoto Michele LeBrasseur James King
resource project Media and Technology
This proposal requests partial funding for the development of a new paleobiology hall at the University of Nebraska State Museum. This project will give students and the general public a dynamic view of the period of time known as the Age of Reptiles. It emphasizes experience with interactive exhibits that focus on concepts of geologic time, how species adapt and change, relative size, scale and time, the activities of scientists as role models, and it provides reinforcement of these experiences for students in the classroom. This project includes the first use in a museum of SemNet, a software program designed for concept mapping and the representation of knowledge networks, which will be used with a videodisc. Prototypes of all interactive exhibits will undergo formative evaluation to establish maximal audience accessibility, ease of use and educational effectiveness. The exhibit concepts will be disseminated throughout the state of Nebraska through mini- versions, teachers in-service training, and scientist-in- residence programs. This project will also be used as a teaching laboratory for the University of Nebraska's graduate program in Museum Studies.
DATE: -
TEAM MEMBERS: Judy Diamond
resource project Media and Technology
The Challenger Center for Space Science Education located in Alexandria, Virginia, a nonprofit organization with a mission to increase the number of youth interested in science and space, is requesting $303,170 over two years from the National Science Foundation (NSF) to develop a new scenario for its Challenger Learning Centers. Located in science centers. museums and schools around the country. Learning Centers house equipment and educational programming for hands-on training during a simulated mission. Scenarios use mathematics, science and problem-solving skills to provide participants with simulated experiences of working in a space laboratory and a "Mission control" laboratory. Challenger Center requests assistance and partnership from NSF to develop, field test, implement and evaluate a new scenario on the environment, "Mission to Planet Earth" scenario. This project will involve collaboration of expert scientists, educators, Challenger staff, and science museum professionals. Annually more than 180,000 students and between 10,000 and 15,000 adults will participate in the scenario at Learning Centers, using space as a format for learning about environmental issues. Challenger is working on the preliminary planning stage between June and December 1991. Two years of funding are requested from NSF beginning in January 1992.
DATE: -
TEAM MEMBERS: Richard Methia