Skip to main content

Community Repository Search Results

resource project Public Programs
Explora Science Center and Children's Museum of Albuquerque will conduct “Roots: supporting Black scholars in STEAM,” a project to increase Explora’s relationships with and relevance to Albuquerque’s Black communities and increase opportunities for Black students in Albuquerque to pursue STEAM. The project is designed to foster a holistic, place-based approach to K–16 STEAM learning that incorporates a growth mindset and highlights the contributions of community members, particularly Black STEAM professionals. The museum will collaborate on project activities with the Mexico Black Leadership Council, the Greater Albuquerque Housing Partnership/Casa Feliz, the Community School at Emerson Elementary, and Sandia National Laboratories’ Black Leadership Committee.
DATE: -
TEAM MEMBERS: Kristin Winchester Leigh
resource project Public Programs
The Children’s Museum will collaborate with six Hartford Public Library branches, three Hartford Family Centers, and the Connecticut Children’s Medical Center to provide  hands-on Science, Technology, Engineering, Arts, and Mathematics  (STEAM) - based programs to over 1,000  local 3 to 14-year old children and their care givers. Program design and development will include planning for  field trips to the museum.  All participants will be given age-specific, supplemental STEAM materials to continue their learning activities at home, and families can attend more than one week of library programs, or more than three Saturdays of family center programs.  The goal will be to help urban Hartford youths find new pathways toward responsible citizenry and fiscal stability.
DATE: -
TEAM MEMBERS: Beth Weller
resource project Public Programs
Building on program assessments and feedback, the Plains Art Museum will scale up its youth leadership-building program, Buzz Lab. The paid summer internship program engages teens in student-led, project-based learning in art and science. The program inspires the teens to lead community change while highlighting the art museum's role in addressing community needs. The program centers around the museum's pollinator garden, and the next phase of the project will engage interns with new and diverse project partners and guest speakers. For example, the interns will help find creative ways to streamline Buzz Lab projects for mass appeal and engage citizens around the pollinator crisis. The museum will also create a support network for interns entering post-secondary education programs by leveraging relationships with regional universities. Project assessment will be responsive to intern feedback so the teens become co-collaborators on the program's future.
DATE: -
TEAM MEMBERS: Alatera McCann
resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Programming includes Neighborhood Walks led by teams of scientists/engineers and artists Community Workshops, Local Artist Projects, and Youth Mentorship focused on neighborhood and citywide water issues Intergenerational participation, from seniors and adult learners to young adults, teens, and middle schoolers
DATE:
resource research Public Programs
In Research + Practice Partnerships with 4 makerspaces in 2 cities, we pursue equity-oriented STEM-rich making with youth from historically underrepresented backgrounds, particularly BIPOC youth and youth in refugee & low-income communities, towards developing: a theory-based and data-driven framework for equitably consequential making a set of individual-level and program-level cases with exemplars of equitably consequential making (and the associated challenges) that can be used by researchers and practitioners for guiding the field an initial set of guiding principles (with
DATE:
TEAM MEMBERS: Angela Calabrese Barton Edna Tan Day Greenberg Melissa Perez Aerin Benavides Ti’Era Worsley
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.

Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
DATE: -
resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Our overarching goal is to better understand the particulars of how and why youth co-make in life-based and STEM-rich ways with families and communities, such that we can better infrastructure community-based maker programs in support of youth learning and well-being.
DATE:
TEAM MEMBERS: Edna Tan Angela Calabrese Barton Day Greenberg Ti’Era Worsley Carmen Turner Grace Thompson Diya Abdo
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. Youth Radio (YR) Media is a national network of journalists, designers, developers and artists ages 14-24 who create media and technology that address key social issues — including, since 2019, A.I. through an ethics and equity lens. Participants are primarily youth of color and those contending with economic and other barriers to full participation in STEM.
DATE:
TEAM MEMBERS: Lissa Soep
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Public Programs
The call for more science, technology, engineering, and mathematics (STEM) education taking place in informal settings has the potential to shape future generations, drive new innovations and expand opportunities. Yet, its power remains to be fully realized in many communities of color. However, research has shown that using creative embodied activities to explore science phenomena is a promising approach to supporting understanding and engagement, particularly for youth who have experienced marginalization. Prior pilot work by the principal investigator found that authentic inquiries into science through embodied learning approaches can provide rich opportunities for sense-making through kinesthetic experience, embodied imagining, and the representation of physics concepts for Black and Latinx teens when learning approaches focused on dance and dance-making. This Research in Service to Practice project builds on prior work to better understand the unique opportunities for learning, engagement, and identity development for these youth when physics is explored in the context of the Embodied Physics Learning Lab Model. The model is conceptualized as a set of components that (1) allow youth to experience and utilize their intersectional identities; (2) impact engagement with physics ideas, concepts and phenomena; and (3) lead to the development of physics knowledge and other skills. The project aims to contribute to more expansive definitions of physics and physics learning in informal spaces. While the study focuses primarily on Black and Latinx youth, the methods and discoveries have the potential to impact the teaching of physics for a much broader audience including middle- and high-school children, adults who may have been turned off to physics at an earlier age, and undergraduate physical science majors who are struggling with difficult concepts. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The research is grounded in sociocultural perspectives on learning and identity, embodied interaction and enactive cognition, and responsive design. The design is also informed by the notion of “ArtScience” which highlights commonalities between the thinking and making practices used by artists and by scientists and builds on the theoretical philosophy that all things can be understood through art or through science but integrating the two lenses allows for more complete understandings. Research will investigate the relationship between embodied learning approaches, design principles, and structures of the Embodied Physics Learning Lab model using the lenses of physics, dance, and integrated ArtScience to better understand the model. The project employs design-based research to address two overarching research questions: (1) What unique opportunities for learning, engagement, and identity development for Black and Latinx youth occur when physics is explored in the context of the Embodied Physics Learning Lab Model? and (2) How do variations in site demographics and site implementation influence the impact and scalability of the Learning Lab model? Further, the inquiry will consider (a) how youth experience and utilize their intersectional various identities in the context of the activities, structures, and essential elements of the embodied physics learning lab; (b) how youth's level of physics engagement changes depending on which embodied learning approaches and essential element structures are used; (c) the physics knowledge and other skills youth attain through the set of activities; and (d) how, if at all, the embodied learning approaches engage youth in thinking about their own agency as STEM doers. An interdisciplinary team of researchers, choreographers, and youth along with community organizations will co-design and implement project activities across four sites. Approximately 200 high school youth will be engaged; 24 will have the role of Teen Thought Partner. Through three iterative design cycles of implementation, the project will refine the model to investigate which elements most affect successful implementation and to identify the conditions necessary for scale-up. Data will be collected in the form of video, field notes, pre- and post- interviews, pre- and post- surveys, and artifacts created by the youth. Analyses will include a combination of interaction analysis, descriptive data analysis, and movement analysis. In addition to the research findings and explication of the affordances and constraints of the model, the project will also create a curricular resource, including narrative text and video demonstrations of physics concepts led by the teen thought partners, video case training modules, and assessment tools.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Dionne Champion
resource project Public Programs
For many youth, gaining access to quality STEM (science, technology, engineering mathematics) experiences is a challenge. Inequity and underrepresentation of youth of color in STEM persist. The makerspace movement holds great promise in broadening participation in STEM among youth from underrepresented communities. Makerspaces are defined as collaborative workspaces inside a library, school, or other community location designed for creating, learning, exploring, and sharing with high- to low-tech tools. Despite the availability of making programs focused on STEM activities targeted towards youth of color, the field has few models for designing these programs in ways that build upon youths’ cultural assets and desires for making. Working collaboratively with youth, families, and maker educators in Lansing, Michigan, and Greensboro, North Carolina, this project aims to deepen the field’s understanding about the rich and deep ingenuity in STEM-based making that youth from underrepresented communities can engage. These insights will be leveraged towards advancing community-based maker programming across four community-based makerspaces. The project will also build capacity among STEM-oriented maker educators, researchers, and youth. This model is important because the voices and perspectives of families and communities have been largely absent from the formative knowledge and theory-building processes of the field of makerspace education.

This project will build new knowledge about how and why youth and families make at home, in communities, and in STEM-based maker programs. Collaborators for the project include the University of Michigan, the University of North Carolina at Greensboro, and four STEM- and youth-oriented making spaces in Lansing, Michigan, and Greensboro, North Carolina. This project will take place in two phases, exploring two main research questions: 1) What are the learning results of making at home and in the community? And 2) How do youth organize community resources for sustained STEM making, and what facilitates or hinders such organization? Phase one investigates the community resources (people, tools, materials, knowledge, data, and spaces) youth leverage towards making and how they do so across time. The project will study how youth connect these resources to STEM-rich making and what youth and families learn in the process. In phase two, design-based research will be used to apply phase one insights to the design of community-based STEM-rich maker programs in four maker clubs in Michigan and North Carolina. This work will develop an understanding of youths’ family and community-based STEM-based making practices, including the community resources (people, tools, materials, knowledge, data, and spaces) that youth leverage.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
resource project Public Programs
This project is a Smart and Connected Communities award. The community is part of Evanston, Illinois and is composed of the lead partners described below:


EvanSTEM which is a in-school/out of school time (OST) program to improve access and engagement for students in Evanston who have underperformed or been underrepresented in STEM.
McGaw YMCA which consists of 12,000 families serving 20,000 individuals and supporting technology and makerspace activities (MetaMedia) in a safe community atmosphere.
Office of Community Education Partnerships (OCEP) at Northwestern University which provides support for the university and community to collaborate on research, teaching, and service initiatives.


This partnership will develop a new approach to learning enagement through the STEAM (Science, Technology, Engineering, Arts, and Mathematics) interests of all young people in Evanston. This project is entitled Interests for All (I4All) and builds upon existing research results of the two Principal Investigators (PIs) and previous partnerships between the lead partners (EvanSTEM and MetaMedia had OCEP as a founding partner). I4All also brings together Evanston school districts, OST prividers, the city, and Evanston's Northwestern University as participants.

In particular the project builds on PI Pinkard's Cities of Learning project and co-PI Stevens' FUSE Studios project. Both of these projects have explicit goals to broaden participation in STEAM pursuits, a goal that is significantly advanced through I4All. In this project, I4All infrastructure will be evaluated using quantitative metrics that will tell the researchers whether and to what degree Evanston youth are finding and developing their STEAM interests and whether the I4All infrastructure supports a significantly more equitable distribution of opportunities to youth. The researchers will also conduct in depth qualitative case studies of youth interest development. These longitudinal studies will complement the quantitative metrics of participation and give measures that will be used in informing changes in I4All as part of the PIs Design Based Implementation Research approach. The artifacts produced in I4All include FUSE studio projects, software infrastructure to guide the students through OST and in-school activities and to provide to the students actionable information as to logistics for participation in I4All activities, and data that will be available to all stakeholders to evaluate the effectiveness of I4All. Additionally, this research has the potential to provide for scaling this model to different communities, leveraging the OST network in one community to begin to offer professional development more widely throughout the school districts and as an exemplar for other districts. These research results could also affect strategies and policies created by local school officials and community organizations regarding how to work together to create local learning environments to create an ecosystem where formal and informal learning spaces support and reinforce STEAM knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Nichole Pinkard Reed Stevens