Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian Zahra Hazari Philip Sadler Gerhard Sonnert
resource project Public Programs
Informal STEM education spaces like museums can intentionally serve surrounding communities and support sustainable and accessible engagement. Building from this base, the project takes a stance that the intersection of the museum, home/family life and the youth’s internal practices and disciplinary sense of self are rooted in history and culture. Thus, this CAREER work builds on the following principles: Black families and youth have rightful presence in STEM and in STEM learning environments; Black families are valuable learning partners; and Black youths need counterspaces to explore STEM as one mechanism for creating future disciplinary agency. In partnership with the Henry Ford Museum and the Detroit-Area Pre-College Engineering Program, the project seeks to (a) expand the field's understanding of how Black youth engineer and innovate; (b) investigate the influence of a culturally relevant curriculum on their engineering practices and identity, knowledge, and confidence; and (c) describe the ways Black families and museums support youth in engineering learning experiences. The work will center on the 20-hour “Innovate” curriculum which was designed by the museum to bridge design, innovation, and creation practices with the artifacts of innovators throughout time. The project comprises six weekend “Innovate” sessions and an at-home innovation experience plus participation in an annual Invention Convention. By focusing on these aims, this research responds to the goals of the Advancing Informal STEM Learning (AISL) program, which seeks to advance evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments. This includes providing multiple pathways for broadening engagement in STEM learning experiences and advancing innovative research on STEM learning in informal environments.

The main research questions of this multiphase CAREER award are: (1) What practices do Black youths and families engage in as they address engineering, design, and innovation challenges? (2) In what ways does a culturally relevant museum-based innovation program influence the design and innovation practices and assessment performance of Black youths and families as they engage in engineering, design, and innovation across learning settings? (3) How does teaching innovation, design, and engineering through historical re-telling and reconstruction influence a youth’s perception of their own identities, abilities, and practices? and (4) How do Black families engage with informal STEM learning settings and what resources best support their engineering, design, and innovation exploration? Youth in sixth grade are the focus of the research. The work is guided by ecological systems, sociocultural learning, culturally relevant pedagogy, and community cultural wealth theories. During phase one, the focus will be to refine the curriculum and logistics of the study implementation. The investigator will enhance the curriculum to include narratives of Black innovators and engineers. Fifteen families will be recruited to participate in the program enhancement pilot and initial research cycle for phase two. In phase three another cohort of families will be recruited to participate. Survey research, narrative inquiry and digital ethnography will comprise the approaches to explore the research questions. The evaluation has a two-pronged focus: to assess (1) how well the enhanced Innovate curriculum and museum/home learning experience supports Black families’ participation and (2) how well the separate phases of the study connect and operate together to meet the research aims. The study’s findings can help families and informal practitioners leverage evidence-based approaches to support Black youth in making connections between history and out-of-school contexts to model and develop their innovative engineering practices. Additionally, this work has implications for Black undergraduate students who will develop skills through their mentorship and researcher roles, studying cultural practices and learning experiences. The research study and findings can inform the design of future museum/home learning programs and research opportunities for Black learners in informal learning spaces.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: DeLean Tolbert Smith
resource project Media and Technology
Research shows that algebra is a major barrier to student success, enthusiasm and participation in STEM for under-represented students, particularly African-American students in under-resourced high schools. Programs that develop ways to help students master algebra concepts and a belief that they can perform algebra may lead to more students entering engineering careers. This project will provide an online engineering program to support 9th and 10th grade Baltimore City Public Schools students, a predominantly low-income African-American cohort, to develop concrete goals of becoming engineers. The goals of the program are to help students with a growing interest in engineering to maintain that interest throughout high school. The project will also support students aspire to an engineering career. The project will develop in students an appreciation of requisite courses and skills, and increase self-efficacy in mathematics. The project will also develop a replicable model of informal education capable of reinforcing the mathematical foundations that students learn during the school day. Additionally, the project will broaden participation in engineering by being available to students during out-of-school time and by having relaxed entrance criteria compared to existing opportunities in supplemental engineering curricula. The project is a collaboration between the Baltimore City Public Schools, Johns Hopkins University Applied Physics Laboratory, Northrop Grumman Corporation, and Expanded School-Based Mental Health programs to support students both during and after participation. The project will benefit society by providing skills that will allow high school students to become members of tomorrow's highly trained STEM workforce.

The research will test whether an informal, scaffolded online algebra-for-engineering program increases students' mastery and self-efficacy in mathematics. The research will advance knowledge regarding informal education by applying Social Cognitive Career Theory as a framework for measuring program impact. The theoretical framework will aid in identifying mechanisms through which students with interest in engineering might persist in maintaining this interest through high school via algebra skill mastery and increased self-efficacy. The project will recruit 200 youth from the Baltimore City Public Schools to participate in the project over three years. Qualitative data will be collected to assess how student and school socioeconomic factors impact implementation, student engagement, and outcomes. The research will answer the following questions: 1) What effect does program participation have on math mastery? 2) What direct and indirect effects do program completion and supports have on students' mathematics self-efficacy? 3) What direct and indirect effects do program components have on engineering career goals by the end of the program? 4) What direct and indirect effects does math self-efficacy have on career goals? 5) To what extent are the effects of program participation on engineering career goals mediated by math self-efficacy and engineering interest? 6) How do school factors relate to the implementation of the program? 7) What socioeconomic-related factors relate to the regularity and continuation of student participation in the program? The quantitative methods of data analysis will employ descriptive and multivariate statistical methods. Qualitative data from interviews will be analyzed using an emergent approach and a coding scheme guided by theoretical constructs. Project results will be communicated to scholars and practitioners. The team will also share information through school newsletters and parent communication through Baltimore City Public Schools.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michael Falk Christine Newman Rachel Durham
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education in eight states that for over forty years introduce science, mathematics and engineering to K-12 students traditionally underrepresented in the discipline. This exploratory study examines the influences that those MESA activities have on students' perception of engineering and their self-efficacy and interest in engineering and their subsequent decisions to pursue careers in engineering. The MESA activities to be studied include field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement.

About 1200 students selected from 40 MESA sites in California, Maryland and Utah are surveyed with instruments that build on those used in prior studies. Focus groups with a randomly selected subset of the students provide follow-up and probe the influence of the most promising activities. In the first year of the project the instruments, based on existing instruments, are developed and piloted. Data are taken in the second year and analyzed in the third year. A separate evaluation determines that the protocols are reasonable and are being followed.

The results are applicable to a number of organizations with similar aims and provide information for increasing the number of engineers from underrepresented populations. The project also investigates the correlation between student engagement in MESA and academic performance. This project provides insights on activities used in informal settings that can be employed in the classroom practice and instructional materials to further engage students, especially student from underrepresented groups, in the study of STEM.
DATE: -
TEAM MEMBERS: Christine Hailey Cameron Denson Chandra Austin
resource project K-12 Programs
Community colleges play a vital role in educating undergraduate students. These higher education institutions educate nearly half of the nation's undergraduate students, particularly among low-income and first-generation students and students of color. Because of the rich diversity that currently exists at these institutional-types, there are immense opportunities to broadening participation throughout the engineering enterprise. To this end, the investigator outlines a joint collaboration with five community colleges, three school systems, two college career academies, and a state partner in Georgia - referred as the Georgia Science, Technology, and Engineering Partnerships for Success (GA STEPS) - to provide dual enrollment classes in career pathways for Georgia high school students in grades 9-12, thereby allowing secondary students to earn college credit. The Georgia STEPS program proposes to leverage mechatronics engineering as a means for broadening engineering participation for community colleges and underserved, underrepresented populations in 48 rural counties to increase engineering awareness, skills training and college and career readiness. The project builds on an existing collaboration that has developed successful engineering opportunities at the community college level, by including a wider regional network of rural Georgia counties and high schools. Further, this project has immense potential to transform engineering education and course-taking for students at the secondary and postsecondary level in Georgia and beyond. It has potential great potential to be scaled and replicated at other placed around the United States.

The project's intellectual merit and innovation is that it leverages a successful mechatronics engineering curriculum that supports engineering skills that support local industry as well as supporting innovations in the mechatronics field. The project includes a collective impact framework, involving various stakeholders and aligning quantitative and qualitative metrics and measurable objectives. The broader impacts of this project is that it increases the engineering knowledge and skills of underserved, underrepresented students that are enrolled in community colleges. Also, the impact to rural communities in Georgia support the fact that this project would meet broader groups that can be positively impacted by this type of collaborative. The ability to provide different parts of this engineering discipline across broad audiences in community colleges - that support underrepresented groups understanding of mechatronics engineering - is broadly useful to the field of engineering.
DATE: -
TEAM MEMBERS: Shawn Utley
resource project Informal/Formal Connections
This project will develop standardized, exportable and comparable assessment instruments and models for Women In Engineering (WIE) programs nationwide, thus allowing them to assess their program's activities and ultimately provide data for making well-informed evaluations.

To accomplish this goal, the principal investigators at the University of Missouri and Penn State University will work over a three-year period with their institutions' WIE programs and three cooperating programs at Rensselaer Polytechnic Institute, Georgia Tech, and University of Texas at Austin. With these five programs that collectively represent a variety of private and public, years of experience for WIE directors and student body characteristics, the investigators will pilot, revise, implement, conduct preliminary data analysis and disseminate easy-to-access, reliable and valid assessment instruments. The principles of formative evaluation will be applied to all instruments and products. All institutions will use the same set of instruments, thus allowing them to have access to powerful benchmarking data in addition to the data from each of their respective institutions.

A prior project, the Women's Experience in College Engineering Project (WECE) sought to characterize the factors that influence women students' experiences and decisions by studying college environments, events and support programs that affect women's satisfaction with their engineering major, and their decisions to persist or leave these majors. In contrast to WECE's macro-level and student focus, this proposal's target audience is WIE directors, with a focus on WIE programs, not students.

Women in Engineering programs around the United States are a crucial part of our country's response to the need for more women in engineering professions. There are about 50 WIE programs nationwide. Half have expressed interest in this effort. WIE directors will benefit by having ready-made assessment tools that will allow them to collect data on programs, evaluate these programs, and make decisions on how to revise programs and / or redistribute limited resources to maximize overall program effectiveness. Data from these instruments will also provide substantiated evidence for administrators, advisory boards and potential funding agencies. Finally, because these instruments will be available nationwide, programs will have the opportunity to take advantage of powerful benchmarking data for their decision-making processes.

This project provides the next logical step in the national movement to recruit and retain women in engineering.
DATE: -
TEAM MEMBERS: Rose Marra Barbara Bogue
resource research Public Programs
The Science Museum of Minnesota (SMM) leverages a professional educator team (“instructors”) comprised of about two dozen individuals who facilitate both formal and informal educational programming in the museum, in K–12 classrooms, and at community-based sites. The experienced instructors of SMM’s Lifelong Learning Group bring innovative programs to both students and their teachers. Recognizing that long-term experiences can have a profound impact on students and teachers, SMM works to develop multiyear relationships based on collaboration. This article focuses primarily on SMM’s well
DATE:
TEAM MEMBERS: Lauren Causey Shannon McManimon Emily Poster
resource project Public Programs
The Morgan State University INCLUDES project will build on an existing regional partnership of four Historically Black Colleges and Universities that are working together to improve STEM outcomes for middle school minority male students that are local to Morgan State in Baltimore, North Carolina A&T in Greensboro, Jackson State in Mississippi, and Kentucky State in Frankfort. Additional partners include SRI International, the National CARES Mentoring Network, and the Verizon Foundation. Using the collective impact-style approaches such as planning and implementing a Network Improvement Community (NIC), developing a shared agenda and implementing mutually reinforcing activities, these partners will address two common goals: (1) Broaden the participation of underrepresented minority males in science and engineering through educational experiences that prepare them for careers in STEM fields; and (2) Create a Network Improvement Community focused on STEM achievement in minority males. Program elements include high-quality instruction in STEM content, mentoring, and professional development. The project will expand to include eight additional partners (six HBCUs and two Hispanic-Serving Institutions) and schools and districts in communities local to their campuses. The INCLUDES pilot will help scale innovations that target impacting minorities in STEM.

The project will develop STEM learning pathways for middle school minority males by harnessing the collective impact of 12 university partners, local K-12 schools and districts with which they partner, and surrounding community organizations and businesses with a vested interest in achieving common goals. Products will include a roadmap for addressing the problem through a Network Improvement Community, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and common metrics, assessments, and shared measurement systems that will be used to measure the collective impact of the Network Improvement Community.
DATE: -
TEAM MEMBERS: Jumoke Ladeji-Osias Cindy Ziker Geneva Haertel Kamal Ali Ayanna Gill Derrick Gilmore Clay Gloster
resource project Public Programs
This project by California State University San Marcos and their collaborators will expand and continue to innovate on a pilot Mobile Making program with the goal of developing a sustainable, regional model for serving underserved, middle-school aged youth in twelve after-school programs in the San Diego region. Evaluation of the current Mobile Making program has documented positive impacts on participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life, and led to a model for engaging underserved youth in Making. The work will focus on implementing the program model sustainably at greater capacity by increasing the number of undergraduate activity leaders, after-school sites, and level of community engagement. The expanded Mobile Making program is expected to engage ~1800 middle school youth at 12 local school sites, with activities facilitated by ~1020 undergraduate CSU-SM STEM majors. The sites are in ethnically diverse and economically disadvantaged neighborhoods, with as many as 90% of students at some sites qualifying for free or reduced price lunch. The undergraduate facilitators are drawn from CSU-SM's diverse student body, which includes 44% underrepresented minorities. Outcomes are expected to include increases in the youth participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life. Positive impacts on the undergraduate facilitators will include broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. The program is designed to achieve sustainability through innovative means such as involving undergraduate facilitators via Community Service Learning (rather than paid positions), and increased community engagement via development and support of a community of practice including local after-school providers, teachers, Makers, and University members. Evaluation of the program outcomes and lessons learned are expected to result in a comprehensive model for a sustainable, university-based after-school Making program with regional impact in underserved communities. Dissemination to other regions will be leveraged via CSU-SM's membership in the California State University (CSU) system, yielding a potential statewide impact. The support of the CSU Chancellor's Office and input from a CSU implementation group will ensure the applicability of the model to other regional university settings, identify common structural barriers and solutions, and increase the probability of secondary implementations. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Edward Price Charles De Leone
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. 'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities.
DATE:
TEAM MEMBERS: Tara Chklovski
resource project Public Programs
Flying Higher will develop a permanent hands-on exhibit that conveys the fundamentals of flight, technology, materials science, and NASA’s role in aeronautics for learners ages 3-12 years and their parents/caregivers and teachers. The exhibit, public programs, school and teacher programs, and teacher professional development will develop a pipeline of skilled workers to support community workforce needs and communicate NASA’s contributions to the nation and world. An innovative partnership with Claflin University (an historically black college) and Columbia College (a women’s liberal arts college) will provide undergraduate coursework in informal science education to support pre-service learning opportunities and paid employment for students seeking careers in education and/or STEM fields. The projects goals are:

1) To educate multi-generational family audiences about the principles and the future of aeronautics; provide hands-on, accessible, and immersive opportunities to explore state-of-the-art NASA technology; and demonstrate the cultural impact of flight in our global community.

2) To provide educational standards-based programming to teachers and students in grades K–8 on NASA-driven research topics, giving the students opportunities to explore these topics and gain exposure to science careers at NASA; and to offer teachers support in presenting STEM topics.

3) To create and implement a professional development program to engage pre-service teachers in presenting museum-based programs focused on aeronautics and engineering. This program will provide undergraduate degree credits, service learning, and paid employment to students that supports STEM instruction in the classroom, explores the benefits of informal science education, and encourages post-graduate opportunities in STEM fields.
DATE: -
TEAM MEMBERS: Julia Kennard